主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
重载四旋翼无人机结构优化设计与强度计算
作者:
作者单位:

中国民用航空飞行学院,中国民用航空局第二研究所,中国民用航空飞行学院,中国民用航空飞行学院,中国民用航空飞行学院

中图分类号:

TB121


The Design Optimization and Strength Analysis of a Heavy-duty Quadrotor UAV
Author:
Affiliation:

Civil Aviation Flight University of China,Second institute of civil aviation administration of China,Civil Aviation Flight University of China,Civil Aviation Flight University of China,Civil Aviation Flight University of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    多旋翼无人机结构设计是无人机研制的重要环节,结构优化设计方法是保证无人机安全飞行、提高无人机性能的关键。根据重载四旋翼无人机性能要求,设计一款最大有效载荷10kg、可折叠、质量轻、强度高的四旋翼无人机。建立无人机结构有限元模型,基于实际工况对机臂及中心板进行静力及屈曲分析;对机臂及中心板的铺层方案进行优化,校核结构强度、刚度和稳定性;并搭建无人机静力测试平台,完成重载四旋翼无人机结构静力加载试验。结果表明:相对结构初始铺层方案,机臂减重43%,中心板减重35%,全机结构累计减重560g;试验测点的应变值与分析值相对误差小于15%,验证了无人机有限元模型和优化设计方案的可靠性。

    Abstract:

    A heavy-duty quadrotor UAV which has the features of foldable, light weight, high strength is designed according to the performance requirements. The maximum payload of this UAV is 10kg. The finite element model of the quadrotor structure is established. Static and buckling analysis of the UAV arm and central plate are carried out based on the actual loading cases. The layer structures of the arm and central plate are optimized. The strength, stiffness and stability of the UAV are verified. Compared with the initial layer structures, the weight of the arms drops by 43%, and the weight of the central plate drops by 35%. The weight of the UAV structure drops by 560 grams. The lowest weight requirement is achieved. An UAV static test platform is built, and the structure static loading test is completed. The strain relative error between the test value and the analysis value is less than 15%. The reliability of the UAV finite element model and the optimized layer structures is verified.

    参考文献
    [1]王峰, 吴江, 周国庆, 等. 多旋翼飞行器发展概况研究[J]. 科技视界, 2015(13): 6-7.
    [2]何漠. 小型旋翼类无人机飞行控制系统设计[D]. 哈尔滨: 哈尔滨工业大学,2013.
    [3]Mahoney R, Kumar V, Corke P. Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor[J]. IEEE Robotics Automation Magazine, 2012(19):20-32.
    [4]张伟, 余晓伟, 余泳昌. 电动多旋翼飞行器的特点及其在农业中的应用[J]. 现代农业科技, 2014(13): 215-218.
    [5]顾文杰, 贺勇, 王成波, 等. 六旋翼农药喷洒无人机的结构设计[J]. 安徽农业科学, 2015,43(31):335-337.
    [6]Michael N, Mellinger D, Lindsey Q, Kumar V. The Grasp Multiple Micro UAV Testbed[J]. Robotics Automation Magazine, 2010, 17(3):56-65.
    [7]Lim H, Park J, Lee D, et al. Build Your Own Quadrotor: Open-source Projects on Unmanned Aerial Vehicles[J]. IEEE Robotics Automation Magazine, 2012(19):33-45.
    [8]Grzonka S, Grisetti G, Burgard W. A Fully Autonomous Indoor Quadrotor[J]. IEEE Transactions on Robotics, 2012,28(1):90-100.
    [9]Hrishikeshavan V, Black J, Chopra I. Design and performance of a quad-shrouded rotor micro vehicle[J]. Journal of Aircraft, 2014,51(3):779-791.
    [10]王伟, 马浩, 徐金琦, 等. 多旋翼无人机标准化机体设计方法研究[J]. 机械设计与制造, 2014(5):147-150.
    [11]田卫军, 李郁, 何扣芳, 等. 四轴旋翼飞行器结构设计与模态分析[J].制造业自动化, 2014, 36(2): 37-39.
    [12]刘峰,高鸿渐,喻辉,等.基于有限元的四旋翼无人机碳纤维结构优化设计与固有模态分析[J].玻璃钢复合材料,2017(4):17-23.
    [13]方璇, 钟柏成. 四旋翼飞行器的研究与应用[J]. 上海工程技术大学学报, 2015,29(2):113-118.
    [14]沈观林, 胡更开, 刘彬. 复合材料力学[M]. 北京: 清华大学出版社, 2013.
    [15]李威, 郭权锋. 碳纤维复合材料在航天航空领域的应用[J]. 中国光学, 2011,4(3):202-212.
    [16]Ali A., Ting Wei Yao., Aziz N. A., et al. Simulation and Experimental Work of Single Lap Bolted Joint Tested in Bending[J]. Suranaree Journal of Science and Technology, 2007, 14(4):331-345.
    [17]Olhoff N., Lund E. Finite Element Based Engineering Design Sensitivity Analysis and Optimization[J]. SSolid Mechanics and Its Applications, 1995, 25:1-45.
    [18]修英姝, 崔德刚. 复合材料层合板稳定性的铺层优化设计[J]. 工程力学, 2005,22(6):212-216.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘峰,喻辉,高鸿渐,代海亮,马佳.重载四旋翼无人机结构优化设计与强度计算[J].航空工程进展,2018,9(1):99-106

复制
分享
文章指标
  • 点击次数:2583
  • 下载次数: 5045
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-08-31
  • 最后修改日期:2017-11-13
  • 录用日期:2017-11-29
  • 在线发布日期: 2018-01-15