主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
基于Bi-LSTM 的无人机轨迹预测模型及仿真
作者:
作者单位:

1.空军工程大学 空管领航学院;2.中国人民解放军94563部队

作者简介:

通讯作者:

中图分类号:

V249.122+ .3; E844

基金项目:

国家自然科学基金资助(61503409)


UAV trajectory prediction simulation for autonomous collision avoidance
Author:
Affiliation:

1.Air Traffic Control and Navigation College,AFEU,Xi’an;2.Unit 94563 of the PLA

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统轨迹预测模型存在模型简化较大、考虑因素较少等问题。结合飞行轨迹连续性、时序性、交互性 的特点,提出基于双向长短期记忆(Bi-LSTM)神经网络的轨迹预测模型,将入侵者的位置、姿态和两机的相对 信息同时作为轨迹预测模型的输入,更加符合真实轨迹变化规律;对建立的基于 Bi-LSTM 的轨迹预测模型采 用综合考虑动量和速度的自适应调整学习步长的学习算法进行训练;并与基于 Elman神经网络的轨迹预测模 型进行仿真对比分析。结果表明:与基于 Elman神经网络的轨迹预测模型相比,所提模型在不同方向预测200 个点的平均绝对误差不超过4m,三维预测效果更优,可以较为准确地进行轨迹预测。

    Abstract:

    Aiming at the problems of traditional trajectory prediction methods, such as large model simplification and less consideration, combined with the characteristics of flight trajectory continuity, time series and interactivity, a trajectory prediction method based on bidirectional long short term memory neural network is proposed. The position, heading, pitch, roll and relative information of the intruder UAV are simultaneously used as the input of the trajectory prediction model, which is more in line with the true trajectory change law. A Bi-LSTM-based trajectory prediction model is established, which can simultaneously learn the implicit information in the forward and backward trajectories, and adopt the adaptive learning rate learning algorithm to train the model. The simulation results show that compared with the Elman neural network, the average absolute error of the model predicted by 200 points in different directions is less than 4m, and the 3D prediction effect is better, and the trajectory prediction can be performed more accurately.

    参考文献
    相似文献
    引证文献
引用本文

杨任农,岳龙飞,宋敏,曹晓剑,王新.基于Bi-LSTM 的无人机轨迹预测模型及仿真[J].航空工程进展,2020,11(1):77-84

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-04
  • 最后修改日期:2019-04-03
  • 录用日期:2019-04-30
  • 在线发布日期: 2020-02-23
  • 出版日期: