主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
基于深度强化学习的多无人机协同进攻作战智能规划
作者:
作者单位:

1.空军工程大学;2.空军工程大学空管领航学院

作者简介:

通讯作者:

中图分类号:

V219

基金项目:

国家自然科学基金(62106284),陕西省自然科学基金(2021JQ-370),军内科研项目(KJ20191A030153)


Multi-UAV Cooperative Offensive Combat Intelligent Planning Based on Deep Reinforcement Learning
Author:
Affiliation:

1.Air Force Engineering University,Xi’an,710000;2.China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无人机依靠作战效费比高、灵活自主等优势逐步替代了有生力量作战,多无人机协同作战任务规划成为热点研究问题。针对传统任务规划采用的智能优化算法存在的依赖静态、低维的简单场景、机上计算较慢等不足,提出一种基于深度强化学习(DRL)的端到端的多无人机协同进攻智能规划方法。将压制敌防空作战(SEAD)任务规划过程建模为马尔科夫决策过程,建立基于近端策略优化(PPO)算法的SEAD 智能规划模型,通过两组实验验证智能规划模型的有效性和鲁棒性。结果表明:基于DRL 的智能规划方法可以实现快速、精细规划,适应未知、连续高维的环境态势,智能规划模型具有战术协同规划能力。

    Abstract:

    UAV have gradually replaced manned aircraft to combat with advantages such as high effectiveness and flexible autonomy. Multi-UAV cooperative cambat mission planning has attracted widespread attention. An end-to-end cooperative attack intelligent planning method for multi-UAV based on deep reinforcement learning (DRL) is presented to overcome the shortcomings of traditional mission planning algorithms, such as dependence on static, low-dimensional simple scenarios and slow on-board computing power. The SEAD mission planning is modeled as the Markov decision process. The SEAD intelligent planning model based on PPO algorithm is established and the general intelligent planning architecture is proposed. We introduce domain randomization, maximizing the entropy of policy and the lower-layer network parameter sharing training tricks, to improve the effectiveness and generalization performance of PPO. Simulation results show that the DRL-based model can achieves fast and fine planning through offline training and online planning, adapt to unknown, continuous and high-dimensional environment situation, which reflects provides a new idea for intelligent planning research.

    参考文献
    相似文献
    引证文献
引用本文

李俊圣,岳龙飞,左家亮,俞利新,赵家乐.基于深度强化学习的多无人机协同进攻作战智能规划[J].航空工程进展,2022,13(6):40-49,96

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-13
  • 最后修改日期:2022-04-25
  • 录用日期:2022-04-27
  • 在线发布日期: 2022-10-23
  • 出版日期: