主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
基于Kriging模型与MOGA算法的有限元模型修正
作者单位:

南京航空航天大学

中图分类号:

V214.1


Finite Element Model Updating Based on Kriging Model and MOGA Algorithm
Author:
Affiliation:

Nanjing University of Aeronautics and Astronautics

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • | | | |
  • 文章评论
    摘要:

    精确的有限元模型可以准确预测真实结构的动力学响应,采用一种融合Kriging 模型与多目标遗传算法(MOGA)的模型修正方法,针对GARTEUR 飞机进行模型修正。首先采用Spearman 相关性分析方法,引入显著性水平系数对飞机模型的初始参数进行筛选;然后将筛选后的参数作为设计变量,利用最佳填充空间(OSF)设计方法获得初始样本点,构建Kriging 响应面模型,将响应面计算结果与实验结果的差作为目标函数;最后利用MOGA 对目标函数进行优化,搜索Pareto 最优解,并且对候选点添加验证点来检验其精度。结果表明:修正后的GARTEUR 飞机模型具有良好的频率复现和预测能力,满足工程精度要求,采用融合Kriging 模型与MOGA 的模型修正方法具备有效性和可靠性。

    Abstract:

    In order to obtain an accurate structural dynamics model, this paper adopts a model update method that integrates the Kriging model and the MOGA algorithm for the GARTEUR aircraft to verify the feasibility of using a fusion of the Kriging model and the MOGA algorithm in the dynamics model correction. The initial parameters of the aircraft model were first screened using Spearman correlation analysis and the introduction of a significance level coefficient P. The screened parameters were then used as design variables to obtain the initial sample points using the OSF experimental design method, construct the Kriging response surface model, use the difference between the response surface calculation results and the experimental results as the objective function, and finally the MOGA algorithm is used to optimize the objective function, search for the Pareto optimal solution and add validation points to the candidate points to check its accuracy. The results show that the updated GARTEUR aircraft model has good frequency reproduction and prediction capability, and meets the engineering accuracy requirements, proving the effectiveness and reliability of using the fused Kriging model and MOGA algorithm in the dynamics model revision.

    参考文献
    [1] 朱广荣. 大型民机结构动力学建模与适航验证分析技术研究[D]. 南京: 南京航空航天大学, 2017.
    ZHU Guangrong. Dynamic modeling and airworthiness compliance analysis for large commercial aircraft structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
    [2] Bernal D. Direct Eigenstructure Assignment for Model Updating[J]. AIAA Journal, 2021, 59(11): 4696–4702.
    [3] Modak S V. Uncorrelated Modes Driven Inverse Eigensensitivity Method for Finite Element Model Updating[J]. AIAA Journal, 2015, 53(6): 1468-1476.
    [4] 徐张明, 高天明, 沈荣瀛, 等.一种改进的利用频响函数进行有限元模型修正的方法[J]. 振动与冲击, 2002, (03): 45-47 94.
    XU Zhangming, GAO Tianming, SHEN Rongying, et al. Improved finite element model updating method based on frequency response functions[J]. Journal of Vibration and Shock, 2002, (03): 45-47 94.
    [5] 丁继锋, 马兴瑞, 韩增尧, 等. 结构动力学模型修正的三步策略及其实践[J]. 航空学报, 2010, 31(03): 546-552.
    DING Jifeng, MA Xingrui, HAN Zengyao, et al. Three-step model updating method in structure dynamics and its application[J]. Acta Aeronautic et Astronautica Sinica, 2010, 31(03): 546-552.
    [6] 王立, 梁昊天, 王相乾, 等. 航空发动机试验器连接机匣动力学模型的确认方法[J]. 机械制造与自动化, 2021, 50(05): 82-87.
    WANG Li, LIANG Haotian, WANGXiangqian, et al. Dynamic model validation of assembled aero-engine test rig casing[J]. Machine Building & Automation, 2021, 50(05): 82-87.
    [7] 仲昭杰, 刘芳华, 孙天圣, 等. 基于响应面法的爬壁机器人多目标优化设计[J]. 机械与电子, 2022, 40(06): 36-40 46.
    ZHONG Zhaojie, LIU Fanghua, SUN Tiansheng, et al. Multi-objective optimization design of wall-climbing robot based on response surface method[J]. Machinery & Electronic, 2022, 40(06): 36-40 46.
    [8] 王涵, 史治宇. 最优阶次多项式响应面法及其在模型修正中的应用[J]. 机械制造与自动化, 2021, 50(06): 93-98.
    WANG Han, SHI Zhiyu. Construction of response surface with optimal order polynomial and its application in FEM updating[J]. Machine Building & Automation, 2021, 50(06): 93-98.
    [9] 鲍诺, 王春洁. 基于响应面优化的结构有限元模型修正[J]. 北京航空航天大学学报, 2014, 40(07): 927-933.
    BAO Nuo, WANG Chunjie. Structural finite element model updating based on response surface optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(07): 927-933.
    [10] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.
    HAN Zhonghua. Kriging surrogate model and its application to design optimization:a review of recent progress[J]. Acta Aeronautic et Astronautica Sinica, 2016, 37(11): 3197-3225.
    [11] 柴山,尚晓江,刚宪约. 工程结构优化设计方法与应用[M]. 北京: 中国铁道出版社, 2015: 17-24.
    CHAI Shan, SHANG Xiaojiang, GANG Xianyue. Optimization design method and application of engineering structure[M]. Beijing: China Rall Way Publishing House[M]. 2015: 17-24.
    [12] 隋允康, 宇慧平. 响应面方法的改进及其对工程优化的应用[M]. 北京: 科学出版社, 2011: 4-19.
    SUI Yunkang, YU Huiping. Improvement of response surface method and its application to engineering optimization[M]. Beijing: Science Press, 2011: 4-19.
    [13] 马静静. 基于Kriging模型的有限元模型修正方法研究[D]. 兰州交通大学, 2019.
    MA Jingjing. Research on finite element model updating method based on kriging model[D]. Lanzhou Jiaotong University, 2019.
    [14] 马静静, 殷红, 彭珍瑞, 等. 基于Kriging模型的损伤识别方法[J]. 机械强度, 2020, 42(04): 786-792.
    MA Jingjing, YIN Hong, PENG Zhenrui. Damage identification method based kriging model[J]. Journal of Mechanical Strength, 2020, 42(04): 786-792.
    [15] 张冬冬, 郭勤涛. Kriging响应面代理模型在有限元模型确认中的应用[J]. 振动与冲击, 2013, 32(09): 187-191.
    ZHANG Dongdong, GUO Qintao. Application of kriging response surface in finite element model validation[J]. Journal of Vibration and Shock, 2013, 32(09): 187-191.
    [16] 吴雨程, 殷红, 彭珍瑞. 基于Kriging模型和提升小波变换的随机模型修正[J]. 应用数学和力学, 2022, 43(07): 761-771.
    WU Yucheng, YIN Hong, PENG Zhenrui. Stochastic model updating based on kriging model and lifting wavelet transform[J]. Application Mathematics and Mechanics, 2022, 43(07): 761-771.
    [17] 万云发, 孙文磊, 王宏伟, 等. 基于Kriging模型与MOGA算法的风力机主轴轻量化设计[J]. 太阳能学报, 2022, 43(03): 388-395.
    WANG Yunfa, SUN Wenlei, WANG Hongwei, et al. Lightweight design of wind turbrine’s main shaft based on kriging model and MOGA algorithm[J]. Acta Energiae Solaris Sinica, 2022, 43(03): 388-395.
    [18] BALMES E. GARTEUR group on ground vibration testing Results from the test of a single structure by 12 laboratories in Europe[A].Proc of 15th IMAC[C]. USA: 1997, 1346-1352.
    [19] 冯振宇, 郝晓帆, 杨青青, 等. GARTEUR飞机模型的模态试验与模型修正技术[J]. 科学技术与工程, 2019, 19(25): 105-111.
    FENG Zhenyu, HAO Xiaofan, YANG Qingqing, et al. Modal test and dynamic model updating for GARTEUR aircraft model[J]. Science Technology and Engineering, 2019, 19(25): 105-111.
    [20] RETT S, NABARRETE A, ARBELO M, et al. Results of the GVT of the Unmodified GARTEUR SM-AG-19 Testbed in South America[C]// 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2010: 2010-2808.
    [21] 连强. 综合区间数Spearman秩相关系数及其应用[J]. 重庆工商大学学报(自然科学版), 2020, 37(06): 71-75.
    LIAN Qiang. The synthetic Spearman rank correlation coefficient of interval number and its application[J]. J Chongqing Technol & Business Univ(Nat Sci Ed), 2020, 37(06): 71-75.
    [22] 王杰, 王滔, 叶爽, 等. 基于Kriging修正模型的铁路捣固镐优化[J]. 中国工程机械学报, 2021, 19(04): 331-336.
    WANG Jie, WANG Tao, YE Shuang, et al. Optimization of the railway tamping pick based on modified kriging model[J]. Chinese Journal of Construction Machinery, 2021, 19(04): 331-336.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李家辉,许锋.基于Kriging模型与MOGA算法的有限元模型修正[J].航空工程进展,2023,14(4):68-75

复制
分享
文章指标
  • 点击次数:417
  • 下载次数: 820
  • HTML阅读次数: 181
  • 引用次数: 0
历史
  • 收稿日期:2022-07-26
  • 最后修改日期:2022-09-18
  • 录用日期:2022-09-21
  • 在线发布日期: 2023-06-20