主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
太阳能飞机全天巡航高度与翼载荷耦合参量敏度分析
作者单位:

沈阳航空航天大学

中图分类号:

V272


The Sensitivity Analysis of Coupling Parameters Between All-Day Cruise Altitude and Wing Load of Solar-Powered Airplane
Affiliation:

Shenyang Aerospace University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | | | |
  • 文章评论
    摘要:

    相对于传统常规动力飞机,太阳能无人机具有飞行高度高和续航能力强的特点,可通过模块化换装任务载荷,执行特种任务。基于长航时太阳能无人机工作原理,分析太阳能无人机全天巡航高度与翼载荷在能量 收支平衡设计体系下的耦合关系,并对其耦合参量(气动效率、太阳能光伏组件效率及铺设率、推进系统效率和负载功率因子、飞行季节与飞行维度)展开系统性的敏度分析。结果表明:长航时太阳能飞机应首先考虑设计或优化合适的升力系数及阻力系数,以达到最大的气动效率;当光伏组件的转换效率达到0.35 以上时,提高光伏组件铺设率对全天巡航高度影响较弱,但有助于提高翼载荷上限。

    Abstract:

    Compared to conventional powered aircraft, the solar-powered aircraft have characteristics of high-altitude and long-endurance. They can modularly change the task loads and carry out related special tasks. Based on the working principle of long endurance solar-powered aircraft, the coupling relationship between the all-day cruising altitude and wing load of solar-powered aircraft under the energy balance design system was analyzed. The coupling parameters, including aerodynamic parameters, solar panels efficiency and paving rate, propulsion system efficiency and load power factor, flight season and flight latitude, were systematically analyzed for sensitivity, The results indicate that the design or optimization of appropriate lift and drag coefficients should be the first consideration for long endurance solar-powered aircraft to achieve best aerodynamic efficiency; When the efficiency of solar panels reaches 0.35 or above, increasing the installation rate of solar panels has a weaker impact on the all-day cruising altitude, but it helps to increase the upper limit of wing load. The research results can serve as a reference for the overall design and improvement optimization of solar-powered aircraft.

    参考文献
    [1]Alvi O R. Development of solar-powered aircraft for multipurpose application[C]//Proceedings of 2010 AIAA SDM Student Symposium, 51st AIAA/ASME/ASCE/AHS/ASC Structures. 2010, 16.
    [2]Rapinett A. Zephyr: a high altitude long endurance unmanned air vehicle[J]. Doctor, Department of Physics, University of Surrey, 2009.
    [3]张健,王江三,耿延升,郭润兆.高空长航时太阳能无人机的技术挑战[J].航空科学技术,2020,31(04):14-20.DOI:10.19452/j.issn1007-5453.2020.04.003.
    Zhang Jian, Wang Jiangsan, Geng Yansheng, Guo Runzhao. Technical Challenges of High Altitude Long endurance Solar Unmanned Aerial Vehicles [J]. Aerospace Science and Technology, 2020,31 (04): 14-20. DOI: 10.19452/j.issn1007-5453.2020. 04.003 (in Chinese)
    [4] Noth A. Design of solar powered airplanes for continuous flight[D]. ETH Zurich, 2008.
    [5]昌敏,周洲,郑志成.太阳能飞机原理及总体参数敏度分析[J].西北工业大学学报,2010,28(05):792-796.
    CHANG Min,ZHOU Zhou,ZHENG Zhicheng,Flight principle of solar-powered airplane and sensitivity analysis of its conceptual parameters[J]. Journal of Northwestern Polytechnical University, 2010, 28(5) : 792-796 (in Chinese)
    [6]昌敏,周洲,李盈盈.基于能量平衡的太阳能飞机可持续高度分析[J].西北工业大学学报,2012,30(04):541-546.
    CHANG Min,ZHOU Zhou,LI Yingying. An effective theoretical analysis of solar-powered airplane[J]. Journal of Northwestern Polytechnical University,2012,30 (4): 541-546(in Chinese)
    [7]朱雄峰.基于广义能量的太阳能飞行器总体设计研究[D].国防科学技术大学,2014.
    ZHU Xiongfeng. Generalized energy based conceptual design method of solar-powered airplane [ D ].Changsha: National University of Defense Technology,2014.
    [8]张健,张德虎.高空长航时太阳能无人机总体设计要点分析[J].航空学报,2016,37(S1):1-7.
    ZHANG Jian,ZHANG Dehu. Analysis on the overall design points of high-altitude long-endurance solar uav [J]. Acta Aeronautica et Astronautica Sinica, 2016,37 ( S1): 1-7(in Chinese).
    [9]朱雄峰,郭正,侯中喜,高显忠,张俊韬.太阳能飞行器设计域分析和总体设计方法[J].宇航学报,2014,35(07):735-742.
    ZHU Xiongfeng, GUO Zheng,HOU Zhongxi,et al. Design domain analysis and conceptual design method of solar-powered vehicle[J]. Journal of Astronautics.2014,35(7):735-742
    [10] Colozza A J. Effect of power system technology and mission requirements on high altitude long endurance aircraft[R]. 1994.
    [11]田孟伟,赵立杰.太阳能无人机功率-能量平衡计算的参数化分析[J].飞机设计,2020,40(05):24-27.DOI:10.19555/j.cnki.1673-4599.2020.05.007.
    TIAN Mengwei,ZHAO Lijie. Parameterized Analysis of Power Energy Balance Calculation for Solar Unmanned Aerial Vehicles [J]. Aircraft Design, 2020,40(05):24-27 (in Chinese)
    [12]Noth A, Bouabdallah S, Michaud S, et al. SKY-SAILOR Design of an autonomous solar powered martian airplane[C]//Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA 2004) ESTEC, Noordwijk, The Netherlands, November 2-4, 2004. European Space Research and Technology Centre (ESTEC), 2004: F-03.
    [13]Kolosnitsyn V S, Karaseva E V. Lithium-sulfur batteries: Problems and solutions[J]. Russian Journal of Electrochemistry, 2008, 44: 506-509.
    [14] André Noth. Design of solar powered airplanes for continuous flight. Switzerland:Ingénieur en Microtechnique Ecole Prolytechnique Fédérale de Lausanne, 2008.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邱福生,董翊行,杜一鸣.太阳能飞机全天巡航高度与翼载荷耦合参量敏度分析[J].航空工程进展,2025,16(1):37-44

复制
分享
文章指标
  • 点击次数:36
  • 下载次数: 118
  • HTML阅读次数: 74
  • 引用次数: 0
历史
  • 收稿日期:2023-07-05
  • 最后修改日期:2023-12-11
  • 录用日期:2023-12-18
  • 在线发布日期: 2024-06-12