主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
机载超轻量化卷积神经网络加速器设计
作者:
作者单位:

航空工业西安航空计算技术研究所

中图分类号:

暂无


Design of Airborne Ultra-lightweight Convolutional Neural Network Accelerator
Author:
Affiliation:

1.Xi’an Aeronautics Computing Technique Research Institute,AVIC,Xi’an 710068;2.China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [10]
  • | | | |
  • 文章评论
    摘要:

    随着机载嵌入式计算系统对智能化应用需求的不断增加,应用性能优异的卷积神经网络模型可以有效解决空战场景中目标识别、边缘检测等问题。然而,卷积神经网络庞大权重参数和复杂的网络层结构,使其计算复杂度过高,所需的计算资源和存储资源也随着网络层数的增加而快速增长,难以在资源和功耗有严苛要求的机载嵌入式计算系统中部署,制约了机载嵌入式计算系统朝着高智能化发展。针对资源受限的机载嵌入式计算系统对超轻量化智能计算的需求,提出一套全流程的卷积神经网络模型优化加速方法,在对算法模型进行超轻量化处理后,通过组合加速算子搭建卷积神经网络加速器,并基于FPGA 开展网络模型推理过程的功能验证。结果证明:本文提出的加速器能够显著降低硬件资源占用率,能够获得良好的算法加速比,对机载嵌入式智能计算系统设计有着重要的技术意义。

    Abstract:

    (小5号黑正):As the demand for intelligent application in airborne embedded computing system is increasing, the convolution neural network model with excellent performance can effectively solve the problems of target recognition and edge detection in air combat scenes. However, the huge weight parameters and complex network layer structure of convolutional neural network make its computational complexity too high, and the required computing resources and storage resources also increase rapidly with the increase of network layers, so it is difficult to deploy in airborne embedded computing systems with strict requirements on resources and power consumption, which restricts the development of airborne embedded computing systems towards high intelligence. Aiming at the demand of ultra-lightweight intelligent computing in the resource-constrained airborne embedded computing system, a set of optimization and acceleration strategy of convolutional neural network model is proposed. After ultra-lightweight processing of the algorithm model, a convolutional neural network accelerator is built by combining acceleration operators, and the function verification of network model reasoning process is carried out based on FPGA. The experimental results show that the designed accelerator can significantly reduce the occupancy rate of hardware resources and obtain a good algorithm speedup ratio, which has important technical significance for the design of airborne embedded intelligent computing system.

    参考文献
    [1]程嘉晖. 基于深度卷积神经网络的飞行器图像识别算法研究[D]. 浙江大学, 2017.CHENG J H. Research on aircraft image recognition algorithm based on depth convolutional neural network [D]. Zhejiang University, 2017(in Chinese).
    [2]Lin K T , Chiu C T , Chang J Y , et al. High Utilization Energy-Aware Real-Time Inference Deep Convolutional Neural Network Accelerator[C]// 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2021.
    [3]Rastegari M, Ordonez V, Redmon J, et al. XNOR-Net: ImageNet classification using binary convolutional neural networks[J]. Springer, Cham,2016.
    [4]孙孝辉, 宋庆增, 金光浩,等. 基于ARM+FPGA平台的二值神经网络加速方法研究[J]. 计算机应用研究, 2020, 37(3):5.SUN X H, SONG Q Z, JIN G H , et al. Research on Acceleration Method of Binary Neural Network Based on ARM+FPGA Platform [J]. Computer Application Research, 2020, 37(3):5(in Chinese).
    [5]邬贵明. FPGA矩阵计算并行算法与结构[D]. 国防科学技术大学.WU G M. Parallel algorithm and structure of FPGA matrix calculation [D]. National University of Defense Technology(in Chinese).
    [6]谷銮, 徐贵力, 王友仁. FPGA动态可重构理论及其研究进展[J]. 计算机测量与控制, 2007, 15(11):4.G L, XU G L, WANG Y R. FPGA Dynamic Reconfigurable Theory and Its Research Progress [J]. Computer Measurement and Control, 2007, 15(11):4(in Chinese).
    [7]Hu, Wei W . Reconfigurable Technology in the Application of Virtual Instrument[J]. Advanced Materials Research, 2014, 1049-1050:1137-1140.
    [8]李旭冬, 叶茂, 李涛. 基于卷积神经网络的目标检测研究综述[J]. 计算机应用研究, 2017, 34(10):7.LI X D, YE M, LI T. Overview of Target Detection Based on Convolutional Neural Network [J]. Computer Application Research, 2017, 34(10):7(in Chinese)..
    [9]Lecun Y, Bottou L. Gradient-based learning applied to document recognition[J].Proceedings of the IEEE, 1998 , 86(11):2278-2324.
    [10]Hinton G E , Salakhutdinov R R . Reducing the Dimensionality of Data with Neural Networks[J]. Science, 313.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

石添介,刘飞阳,张晓.机载超轻量化卷积神经网络加速器设计[J].航空工程进展,2024,15(2):188-194

复制
分享
文章指标
  • 点击次数:228
  • 下载次数: 705
  • HTML阅读次数: 92
  • 引用次数: 0
历史
  • 收稿日期:2023-07-07
  • 最后修改日期:2023-09-19
  • 录用日期:2023-11-23
  • 在线发布日期: 2024-03-08