主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
基于深度学习的无人机识别方法现状与挑战
DOI:
作者:
作者单位:

1.中国民用航空飞行学院;2.中国民用航空飞行学院 航空电子电气学院

作者简介:

通讯作者:

中图分类号:

V279

基金项目:

中央高校基本科研业务费专项资金资助(ZJ2023-012,PHD2023-007),四川省通用航空器维修工程技术研究中心资助课题(GAMRC2021ZD01)


Status and challenges of UAV recognition methods based on deep learning
Author:
Affiliation:

Civil Aviation Flight University of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无人机在军事/民用/商业领域的广泛应用促使对其识别和分类的需求。随着人工智能的不断发展,深度学习作为一种机器学习技术,在目标检测领域展现出良好的性能,也可应用于无人机识别领域。本文首先介绍了无人机识别的背景和意义,回顾了深度学习的发展历程,并分别介绍了目标检测中两种重要的算法结构:两阶段目标检测算法和单阶段目标检测算法;然后,对目标检测常用算法以及算法中的骨干网络等进行了阐述,归纳了近年来无人机识别改进算法的改进策略,总结了改进效果及其缺点和局限性;最后,针对目前无人机识别的研究现状,提出展望和挑战,有望在建立无人机数据集,提高无人机检测的准确性、实时性等方面取得更大突破,推动无人机技术在各个领域的应用。

    Abstract:

    The wide range of military, civil, and commercial applications of UAVs has prompted the need for their recognition and classification. With the development of artificial intelligence, deep learning, as a machine learning technique, has shown good performance in the field of object detection, and is also applied to the field of UAV recognition. This paper firstly introduces the background and significance of UAV recognition, reviews the development history of deep learning, and introduces two important algorithm structures in object detection: two-stage detector and single-stage detector. Secondly, it describes the common algorithms for object detection and the backbone network in the algorithms, and then summarises the improvement strategies of improved algorithms for UAV recognition in recent years, and summarises the improvement effect and its shortcomings and limitations. Finally, the outlook and challenges are discussed with respect to the current research status of UAV recognition, which is expected to make greater breakthroughs in establishing UAV datasets, improving the accuracy and real-time performance of UAV detection, and promoting the application of UAV technology in various fields.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-22
  • 最后修改日期:2024-05-20
  • 录用日期:2024-05-30
  • 在线发布日期: 2024-12-23
  • 出版日期: