主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
贴敷宏纤维复合材料片的飞机壁板振动响应预测
作者:
作者单位:

1.航空声学与振动航空科技重点实验室 中国飞机强度研究所;2.东北大学 机械工程与自动化学院

中图分类号:

V233.1

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Prediction of vibration response of aircraft panel cov-ered with macro-fiber composite patches
Author:
Affiliation:

Aviation Science and Technology Key Laboratory of Aeronautical Acoustics and Vibration Intensity Aircraft Strength Research Institute Xi'an

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | | | |
  • 文章评论
    摘要:

    传统的有限元模型存在计算成本高、黑箱操作多、缺乏自主知识产权等问题。采用解析法研究基础谐波激励下贴敷宏纤维复合材料片(MFC)的飞机壁板振动响应的预测问题;基于经典层合板理论、机电耦合本构方程和能量法,建立基础谐波激励下MFC-壁板的解析模型;利用速度反馈法和模态叠加原理,实现对该激励条件下结构系统在主动控制前后振动响应的求解;结合文献和组建的振动测试系统获得的实验数据,对该解析模型及其预测结果进行详细验证。结果表明:相较于文献结果,模型等固有频率计算偏差最大不超过2%,模型预测获得的前两阶共振响应的最大误差不超过8.6%,均在误差允许的范围内。

    Abstract:

    A predictive study is conducted on the vibration response of aircraft wall panels with Macro Fiber Composite (MFC) patches under basic harmonic excitation. Based on classical laminate plate theory, electromechanical coupling constitutive equations, and the energy method, an analytical model of the MFC-panel system under basic harmonic excitation is established. By employing velocity feedback control and modal superposition principles, the vibration response of the structure system before and after active control under such an excitation load is successfully solved. The analytical model and its prediction results are extensively validated through the literature data and experimental data obtained from a vibration testing system that is assembled. The research results indicate that, compared to the literature results, the maximum deviation in the calculation of natural frequencies by the proposed model does not exceed 2 %. Additionally, the maximum error in predicting the first two order resonance responses by the model is less than 8.6 %, with both of them being within an acceptable range. The analytical model and response prediction method presented in this study provide a new approach and analytical tool for analyzing and evaluating the dynamic mechanics and vibration control performance of MFC-panel structures.

    参考文献
    [1] 宋威, 鲁伟, 蒋增辉, 等. 内埋武器高速风洞弹射投放模型试验关键技术研究[J]. 力学学报, 2018, 50(6): 1346-1355.SONG Wei, LU Wei, JIANG Zenghui, BAI Peng. The crucial technique investigation of wind-tunnel drop-model testing for the supersonic internal weapons[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1346-1355(in Chinese).
    [2] 王显圣, 周方奇, 徐来武, 等. 内埋弹舱流动/振动/噪声多场载荷实验[J]. 空气动力学学报, 2022, 40(4): 1-9WANG Xiansheng, ZHOU Fangqi, XU Laiwu, et al. Experiments on multi-field loads of flow/vibration/noise induced by internal weapons bay[J]. 2019, Acta Aerodynamica Sinica, 2022, 40(3): 160-168(in Chinese).
    [3] Kermani M R, Moallem M, Patel R V. Applied vibration suppression using piezoelectric materials[M]. Nova Publishers, 2008.
    [4] Sodano H A, Park G, Inman D J. An investigation into the performance of macro-fiber composites for sensing and structural vibration applications[J]. Mechanical systems and signal processing, 2004, 18(3): 683-697.
    [5] Kim M, Li Q, Huang J K, et al. Active control of nonlinear panel flutter using aeroelastic modes and piezoelectric actuators[J]. AIAA journal, 2008, 46(3): 733-743.
    [6] Raja S, Ikeda T, Dwarakanathan D. Deflection and vibration control of laminated plates using extension and shear actuated fiber composites[J]. Smart Materials Research, 2011, 2011.
    [7] Zhang S Q, Wang Z X, Qin X S, et al. Geometrically nonlinear analysis of composite laminated structures with multiple macro-fiber composite (MFC) actuators[J]. Composite Structures, 2016, 150: 62-72.
    [8] 黄丹丹, 陈勇. 压电纤维复合材料有限元模拟及其试验研究[J]. 压电与声光, 2019, 41(02): 234-240.HUANG Dandan, CHENG Yong. Finite element simulation and experimental study on macro fiber composite[J]. Piezoelectrics Acoustooptics, 2019, 150: 62-72(in Chinese).
    [9] Gawryluk J, Mitura A, Teter A. Dynamic response of a composite beam rotating at constant speed caused by harmonic excitation with MFC actuator[J]. Composite Structures, 2019, 210: 657-662.
    [10] Hao Y X, Zhao K F, Zhang W, et al. Nonlinear dynamics and dynamic instability of smart structural cross-ply laminated cantilever plates with MFC layer using zigzag theory[J]. Applied Mathematical Modelling, 2020, 79: 639-671.
    [11] 张辉, 孙伟, 骆海涛. 贴敷MFC复合材料薄板半解析建模及减振分析[J/OL]. 航空动力学报: 1-13.ZHANG Hui, SUN Wei, LUO Haitao. Semi-analytical modeling and vibration reduction analysis of composite thin plate with MFC[J/OL]. Journal of Aerospace Power, 1-13(in Chinese).
    [12] Zhang H, Sun W, Luo H, et al. Modeling and active control of geometrically nonlinear vibration of composite laminates with macro fiber composite[J]. Composite Structures, 2023: 117292.
    [13] Selim B A, Liu Z, Liew K M. Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers[J]. Thin-Walled Structures, 2019, 145: 106372.
    [14] He X Q, Ng T Y, Sivashanker S, et al. Active control of FGM plates with integrated piezoelectric sensors and actuators[J]. International journal of Solids and Structures, 2001, 38(9): 1641-1655.
    [15] Li H, Wang X T, Hu X Y, et al. Vibration and damping study of multifunctional grille composite sandwich plates with an IMAS design approach[J]. Composites Part B: Engineering, 2021, 223: 109078.
    [16] 薛鹏程, 李晖, 常永乐, 等. 悬臂边界下纤维增强复合薄板固有频率计算及验证[J]. 航空动力学报, 2016, 31(7): 1754-1760.XUE Pengcheng, LI Hui, CHANG Yongle, et al. Natural frequency calculation and validation of fiber reinforced composite thin plate under cantilever boundary[J]. Journal of Aerospace Power, 2016, 31(7): 1754-1760(in Chinese).
    [17] 李晖, 薛鹏程, 周正学, 等. 基于多层次修正的纤维复合薄板振动响应预测[J]. 哈尔滨工程大学学报, 2018, 39(10):7.LI Hui, XUE Pengcheng, ZHOU Zhengxue, et al. Prediction of vibration response in fiber composite thin plate based on the multilevel correction method[J]. Journal of Harbin Engineering University, 2018, 39(10):7(in Chinese).
    [18] Li J, Xue Y, Li F, et al. Active vibration control of functionally graded piezoelectric material plate[J]. Composite Structures, 2019, 207: 509-518.
    [19] Gao Z, Li H, Zhao J, et al. Analyses of dynamic characteristics of functionally graded porous (FGP) sandwich plates with viscoelastic materials-filled square-celled core[J]. Engineering Structures, 2021, 248: 113242.
    [20] Rouzegar J, Abad F. Free vibration analysis of FG plate with piezoelectric layers using four-variable refined plate theory[J]. Thin-Walled Structures. 2015. 89: 76-83.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李凯翔,乔洲,张飞,李晖,韩清凯.贴敷宏纤维复合材料片的飞机壁板振动响应预测[J].航空工程进展,2024,15(5):106-113

复制
分享
文章指标
  • 点击次数:45
  • 下载次数: 177
  • HTML阅读次数: 22
  • 引用次数: 0
历史
  • 收稿日期:2023-11-27
  • 最后修改日期:2024-02-26
  • 录用日期:2024-03-01
  • 在线发布日期: 2024-09-02