主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
非均匀温度场下大型工装基准点热漂移预测分析
DOI:
作者:
作者单位:

1.南京航空航天大学机电学院;2.西飞民用飞机有限责任公司;3.航空工业西安飞机工业集团有限责任公司

作者简介:

通讯作者:

中图分类号:

v262.4

基金项目:

国防基础科研项目(JCKY2020605C014)


Prediction and analysis of thermal drift in large-scale tooling reference points under non-uniform temperature field
Author:
Affiliation:

College of mechanical and electrical engineering,Nanjing University of Aeronautics and Astronautics,Nanjing

Fund Project:

Defense Industrial Technology Development Program

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在飞机装配数字化测量中,大尺寸测量场构造精度高度依赖于工装上布设的基准点位置的稳定性,而大型工装基准点位置极易因环境温度变化发生热漂移,导致测量场精度降低甚至失效。以某组合式大型工装为例构建非均匀温度场下大型工装基准点热漂移预测数值模型,基于该模型仿真得到大量热漂移数据,利用BP 神经网络构建工装热漂移代理模型;基于该代理模型制定测量场精度提升方案。采用实地收集的工装基准点处温度及坐标实测数据验证代理模型提高测量场构建精度的有效性及正确性,并对模型得到的基准点温度—坐标漂移数据进行对比分析。结果表明:仿真结果平均相对误差均在18% 以下,BP 神经网络结果的平均相对误差均在26% 以下,可有效提高测量场构建精度。

    Abstract:

    In the digital measurement of aircraft assembly, the accuracy of large-size measurement field construction is highly dependent on the stability of the reference position laid on the tooling. The position of the reference points of a large tooling is highly susceptible to thermal drift due to changes in ambient temperature, leading to a reduction in the accuracy or even failure of the measurement field. Therefore, this paper takes a combined large-scale tooling as an example, and constructs a numerical model for predicting the thermal drift of the reference points of a large-scale tooling under the non-uniform temperature field by collecting the measured temperature and coordinate data at the reference points of the tooling in the field; based on the large amount of thermal drift data obtained from the simulation of the aforementioned model, the surrogate model for the thermal drift of the tooling is constructed by using BP neural network; and finally, the measured and the surrogate model are compared and analyzed in terms of the drift data of the reference points temperature-coordinate. The results show that the average relative errors of the simulation results are all below 18%, and the average relative errors of the BP neural network results are all below 22%, realizing the effective prediction of the thermal drift of the reference points.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-08
  • 最后修改日期:2024-02-23
  • 录用日期:2024-02-26
  • 在线发布日期: 2025-02-07
  • 出版日期: