主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
基于CoKriging代理模型的低声爆优化设计
DOI:
作者:
作者单位:

中国航空研究院

作者简介:

通讯作者:

中图分类号:

V211.3

基金项目:


Optimal design for low-boom based on CoKriging surrogate model
Author:
Affiliation:

Chinese Aeronautical Establishment

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确预测并有效降低声爆水平是新一代绿色超声速民用飞机发展的关键问题之一。为了提高超声速民用飞机的低声爆优化设计效率,基于CoKriging 代理模型并结合快速声爆预测方法和高可信度声爆预测方法开发多可信度的低声爆优化设计程序;将对TU-144 模型的声爆预测结果与试验结果进行对比,以验证两种预测方法的可靠性;对某超声速民用飞机模型的机翼外形进行参数敏感性分析和优化设计。结果表明:预测结果与试验结果吻合较好,证明本文所提两种预测方法准确可信;地面声爆史蒂文斯响度级对外翼半展长、外翼前缘后掠角、内翼半展长这三个参数较为敏感;经过优化后地面声爆最大过压降低约4Pa,史蒂文斯响度级降低了4.26dB;与只使用高可信度样本数据的Kriging 模型相比,CoKriging 模型融合了高、低可信度的样本数据,在确保一定预测精度的情况下节省了约43% 的时间成本。

    Abstract:

    Accurately predicting and effectively reducing sonic boom levels is one of the key issues in the development of the new generation of green supersonic civil aircraft. In order to improve the efficiency of low-boom optimal design for supersonic civil aircraft, a multi-fidelity optimal design program for low-boom was developed based on the CoKriging surrogate model combined with fast sonic boom prediction method and high fidelity sonic boom prediction method. The sonic boom prediction results of the TU-144 model are basically consistent with the experimental results, verifying the reliability of the two prediction methods. A parameter sensitivity analysis and optimal design were conducted on the wing shape of a certain supersonic civil aircraft model. The results showed that Stevens’ loudness level of the ground sonic boom was more sensitive to three parameters: the half span length of the outer wing, leading edge sweep angle of the outer wing, the half span length of the inner wing. After optimization, the maximum ground sonic boom overpressure was reduced by about 4Pa, and the Stevens’ loudness level was reduced by 4.26dB. Compared with the Kriging model that only uses high fidelity sample data, the CoKriging model integrates high and low fidelity sample data, saving about 43% of time cost while ensuring a certain prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-22
  • 最后修改日期:2024-03-25
  • 录用日期:2024-04-02
  • 在线发布日期: 2025-02-24
  • 出版日期: