主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
面向智能空战的深度强化学习技术综述
DOI:
作者:
作者单位:

1.西北工业大学;2.成都飞机设计研究所

作者简介:

通讯作者:

中图分类号:

V24

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


A survey of deep reinforcement learning technologies for intelligent air combat
Author:
Affiliation:

Northwestern Polytechnical University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前主要航空大国及相关研究机构将着力点聚焦于智能空战关键技术的探索与研究,而深度强化学习结合了深度学习的感知能力与强化学习的决策能力,在空战能力涌现方面表现出巨大优势。本文结合智能空战发展的迫切需求,在分析和归纳深度强化学习技术领域主流算法的基础上,探讨了其与空战领域的结合点;从算法实现角度指明深度强化学习在空战中的关键技术;通过梳理当前空战领域前沿技术成果,得出未来深度强化学习研究将由单机空战向集群空战发展这一趋势,进而提出了其面临的挑战,为智能空战中智能算法的发展提供借鉴和指导。

    Abstract:

    With the gradual unmanned, intelligent, and clustered development of aircraft, the air battlefield is gradually entering the era of intelligent air combat. Major aviation powers such as the United States and China, as well as related research institutions, are also focusing on exploration and research of key technologies for intelligent air combat. Deep reinforcement learning combines the perceptual ability of deep learning with the decision-making ability of reinforcement learning, demonstrating significant advantages in the emergence of air combat capabilities. This article, based on the urgent needs of intelligent air combat development, analyzes and summarizes the mainstream algorithms in the field of deep reinforcement learning, and explores the points of integration with the air combat field. From the perspective of algorithm implementation, it identifies key technologies of deep reinforcement learning in air combat. By sorting out the current cutting-edge technological achievements in the field of air combat, it is concluded that the future research on deep reinforcement learning will develop from single-to-single air combat to cluster air combat. Finally, the challenges algorithm faces are proposed, providing reference and guidance for the development of intelligent algorithms in intelligent air combat.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-12
  • 最后修改日期:2024-03-28
  • 录用日期:2024-04-01
  • 在线发布日期: 2025-03-20
  • 出版日期: