主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
基于时间序列异常检测的航空发动机故障诊断
DOI:
作者:
作者单位:

中国航发控制系统研究所

作者简介:

通讯作者:

中图分类号:

V263.6

基金项目:


Aero-engine fault diagnosis based on time series anomaly detection
Author:
Affiliation:

Aecc aero engine control system institute

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    航空发动机的故障诊断存在数据偏斜问题,即故障样本数量远少于正常样本数量,且故障样本无法反映整个运行工况,导致常规的分类模型泛化能力较差。针对上述问题,提出一种基于改进的深度支持向量数据描述的时间序列异常检测模型。使用长短期记忆递归神经网络(LSTM)映射样本的输入和输出,与实际采集输出构成时序异常向量,再通过融入变分自编码器(VAE)的深度支持向量数据描述(DeepSVDD)实现航空发动机时序数据的异常检测;在某型航空发动机地面试车台进行实验验证,与孤立森林(IF)、TranAD (Trans?former-based Anomaly Detection Model)及GANomaly 等对比方法进行对比。结果表明:采用本文所提模型计算得到特征曲线下面积(AUC)值达到0.987 8,具有最好的异常检测性能,能够有效地应用于航空发动机的各项异常检测及故障诊断任务中。

    Abstract:

    Abstract: The fault diagnosis of aero-engines was confronted with a data skew issue, where the number of fault samples was sig-nificantly fewer than normal samples, and the fault samples couldn"t adequately represent the entire operating conditions, resulting in poor generalization ability of conventional classification models. To address this issue, an improved deep support vector data descrip-tion-based time series anomaly detection model was proposed. Initially, a Long Short-Term Memory Recurrent Neural Network (LSTM) was employed to map the inputs and outputs of samples, forming temporal anomaly vectors with actual collected outputs. Subsequently, deep support vector data description (SVDD) incorporating Variational Autoencoder (VAE) was utilized to achieve anomaly detection for aero-engine time series data. Experimental results on a certain type of aero-engine ground test platform demonstrated that compared to contrastive methods such as Isolation Forest (IF), Transformer-based Anomaly Detection Model (TranAD), and GANomaly, the proposed algorithm achieved an Area Under the Curve (AUC) value of 0.9878, indicating su-perior anomaly detection performance. Therefore, the proposed algorithm can effectively be applied to various anomaly detection and fault diagnosis tasks in aero-engine systems.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-16
  • 最后修改日期:2024-05-18
  • 录用日期:2024-06-12
  • 在线发布日期: 2025-02-24
  • 出版日期: