主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
软式空中加油主动增稳锥套控制研究
作者:
作者单位:

中国空气动力研究与发展中心

中图分类号:

V212.1


Control strategy of an active stabilized drogue for hose-drogue aerial refueling
Affiliation:

China Aerodynamics Research and Development Center

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • | | | |
  • 文章评论
    摘要:

    软式空中加油中,由于软管本身为柔性体,在加油机尾流、阵风和大气紊流等复杂风场扰动下,存在飘摆现象,严重影响空中加油对接成功率。针对加油机尾流场建模、尾流风场扰动影响研究过程中存在精度和实时性要求较高的特点,采用神经网络与CFD 计算相结合的方法,依据高精度CFD 方法生成流场数据信息,利用BP 神经网络训练风场坐标参数和速度参数的映射关系,建立加油机尾流风场模型;针对锥套飘摆抑制控制方法存在抗干扰能力差、对模型依赖性较强、工程实现难度较大等问题,采用模糊PD 控制方法,实现复杂风场干扰下翼舵式主动增稳锥套的飘摆抑制。结果表明:Y、Z 方向平均飘摆幅度分别降低86.49%、79.04%,Y、Z 方向平均速度强度分别降低72.98%、65.29%,有效抑制锥套飘摆幅度。

    Abstract:

    In the hose-drogue aerial refueling, because the hose is a flexible body, there is a floating phenomenon under the disturbance of complex wind fields such as tanker wake, gust and atmospheric, which seriously affects the success rate of docking. In view of the high accuracy and real-time requirements in the process of modeling the wake flow field of tanker and studying the influence of wake wind field disturbance, the method of combining neural network and CFD is adopted. Based on high-precision CFD method to generate flow field data, BP neural network is used to train the mapping between wind field coordinate parameters and velocity parameters, so as to establish the tanker wake wind field model. Aiming at the problems of poor anti-interference ability, strong dependence on model and difficulty in engineering realization, fuzzy PD control method is adopted to realize the swing suppression of wing-rudder active stabilization drogue under complex wind field interference. The simulation results show that the average floating amplitude in Y and Z directions is reduced by 86.49% and 79.04% respectively, and the flight test results show that the average speed intensity in Y and Z directions is reduced 72.98% and 65.29% respectively, which effectively restrains the floating amplitude of drogue.

    参考文献
    [1] 陶杨, 颜仙荣. 国外空中加油技术及装备现状与趋势[J]. 飞机设计, 2021, 41(03): 39-43.
    TAO Yang, YAN Xiaorong. Current station and development trend of air-to-air refueling technology and equipments[J]. Aircraft Design, 2021, 41(3): 39-43. (in Chinese)
    [2] Attila Dofan, Timothy A L. Wake-vortex induced wind with turbulence in aerial refueling-part b: model and simulation validation [R]. AIAA-2008-6697, 2008.
    [3] Dickes E G, Gingras D R, Hultberg R S, et al. Unmanned combat air vehicle (UGAV) automated refueling simulation development [R] . AFRL-VA-WP-TR-2006-3170, 2002.
    [4] 陆宇平, 杨朝星, 刘洋洋. 空中加油系统的建模与控制技术综述[J]. 航空学报, 2014, 35(9): 2375-2389.
    LU Yuping, YANG Chaoxing, LIU Yangyang. A Survey of modeling and control technologies for aerial refueling system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2375-2389. (in Chinese)
    [5] 张博连. 无人机自主空中加油对接控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
    ZHANG Bolian. Docking control method for autonomous aerial refueling for unmanned aerial vehicles[D]. Haebin: Harbin Institute of Technology.
    [6] 全权, 魏子博, 高俊, 等. 软管式自主空中加油对接阶段中的建模与控制综述[J]. 航空学报, 2014, 35(9): 2390-2410.
    QUAN Quan, WEI Zibo, GAO Jun, et al. A survey on modeling and control problems for probe and drogue autonomous aerial refueling at docking stage[J]. Acta Aeronautica et stronautica Sinica, 2014, 35(9): 2390-2410. (in Chinese)
    [7] Jewell W, Stapleford R. Mathematical models used to simulate aircraft encounters with wake vortices: NASA-TR-1035-4 [R] . US: NASA, 1975.
    [8] Bloy A W, West M. Interference between tanker wing wake with roll-up and receiver aircraft [J] . Journal of Aircraft, 1994, 31(5): 1214-1216.
    [9] Dofan A, Venkatarmanan S, Blake W. Modeling of aerodynamic coupling between aircraft in close proximity [J] . Journal of Aircraft, 2005, 42(4): 941-955.
    [10] Switzer G F, Proctor F H, Ahmad N M. An improved wake vortex tracking algorithm for multiple aircraft [R] . AIAA-2010-7933, 2010.
    [11] Takashi Misaka, Frank Holzapfel, Thomas Gerz. Wake evolution of wing-body configuration form rool-up to vortex decay [R] . AIAA-2012-0428, 2012.
    [12] Jurkovich M S. CFD prediction of the flow field behind the KC-135R tanker [R] . AIAA-2011-3510, 2011.
    [13] Claase E H. Robust multi-H2 output-feedback approach to aerial refueling automation of large aircraft via linear matrix inequalities [D]. Stellenbosch: Stellenbosch University, 2013.
    [14] 徐阳, 张维峰, 薛长宝, 等. 可变阻力特征对锥套拖曳位置的影响[J]. 南京航空航天大学学报, 2021, 53(4): 605-612.
    XU Yang, ZHANG Weifeng, XUE Changbao, et al. Effects of Vaeiable Drag Characteristic on Paradrogue Draught Position[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(4): 605-612. (in Chinese)
    [15] 石超, 薛建平, 董新民, 等. 空中加油锥套支柱数对稳定伞阻力系数影响研究[J]. 飞行力学, 2014, 32(4): 321-324.
    SHI Chao, XUE Jianping, DONG Xinmin, et al. Investigations of impact on drag coefficient of drogue canopy caused by the number of drogue strut in aerial refueling system[J]. Flight Dynamics, 2014, 32(4): 321-324. (in Chinese)
    [16] KAPSEONG R, EMRE B. Aerodynamic investigations of paradrogue assembly in aerial refueling system: AIAA 2016-855 [R]. [S.I.]: AIAA, 2011.
    [17] ERIC R, WILLIAM K. Passive variable speed drogue [P]. US: 6588465, 2003-07-08.
    [18] 张进, 袁锁中, 龚全铨. 空中加油软管-锥套动态建模及其飘摆运动抑制[J]. 科学技术与工程, 2015, 15(8): 134-138.
    ZHANG Jin, YUAN Suozhong, Gong Quanquan. Dynamic modeling and restriction of shaking motion of aerial refueling hose-drogue[J]. Science Technology and Engineering, 2015, 15(8): 134-138. (in Chinese)
    [19] 张进, 袁锁中, 龚全铨. 空中加油软管-锥套空中飘摆运动建模与控制[J]. 系统仿真学报, 2016, 28(2): 388-395.
    ZHANG Jin, YUAN Suozhong, GONG Quanquan. Modeling and control of shaking motion of aerial refueling hose-drogue[J]. Journal of System Simulation, 2016, 28(2): 388-395. (in Chinese)
    [20] 孟中杰, 卢俊杰, 郭光光, 等. 一种基于舵面的自主空中加油试验锥套: CN114577431B[P]. 2022-12-30.
    MENG Zhongjie, LU Junjie, GUO Guangguang, et al. An autonomous aerial refueling test drogue based on rudder surface: CN114577431B[P]. 2022-12-30. (in Chinese)
    [21] WU L, SUN, et al. Modeling method and control strategy for hose-drogue aerial refueling system[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, v.35(02):157-168.
    [22] 吴玲, 孙永荣, 黄斌, 等. 不确定环境下的软管-锥套建模及控制研究[J]. 计算机工程与应用, 2017, 53(18): 250-256.
    WU Ling, SUN Yongrong, HUANG Bin, et al. Modeling and control of hose-drogue aerial refueling system in uncertain environment.[J]. Computer Engineering and Application, 2017, 53(18): 250-256. (in Chinese)
    [23] 王海涛, 董新民, 窦和锋, 等. 软管锥套式空中加油系统建模与特性分析[J]. 北京航空航天大学学报, 2014, 40(1): 92-98.
    WANG Haitao, DONG Xinmin, DOU Hefeng, et al. Dynamic modeling and characteristics analysis of hose-paradrogue aerial refueling system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1): 92-98. (in Chinese)
    [24] WOODCOCK R J, Drake D E. Flying Qualities of Piloted Airplanes[R]. Tech. Rep. U.S. Military Specification MIL-F-8785C, 5 November 1980.
    [25] 翟堃贤. 空中加油建模与仿真系统研究[D]. 西安: 西安电子科技大学, 2020.
    ZHAI Kunxian. Research on modeling and simulation system of aerial refueling[D]. Xiaan: Xidian University, 2020.
    [26] 刘益剑, 王树青. 混合参数自调整模糊PID控制的应用[J]. 电光与控制, 2003, 10(4): 31-34.
    LIU Yijian, WANG Shuqing. Application of mixed parameter self-adjusted fuzzy PID control[J]. Electronics Optics & Control, 2003, 10(4): 31-34. (in Chinese)
    [27] 李宏图, 黄安祥, 贾荣珍, 等. 空中加受油仿真中尾流扰动的建模与仿真[J]. 系统仿真学报, 2008, 20(4): 1020-1023.
    LI Hongtu, HUANG Anxiang, JIA Rongzhen, et al. Model and simulation of wake interference in air-to-air refueling flight simulation[J]. Journal of System Simulation, 2008, 20(4): 1020-1023. (in Chinese)
    [28] 徐娟, 陈时桢, 何烊剑, 等. 基于模糊PID的平衡头自适应控制策略研究[J]. 电子测量与仪器学报, 2016, 30(6): 895-902.
    XU Juan, CHEN Shizhen, HE Yangjian, et al. Research on self-satisfaction control strategy of balancing head based on fuzzy-PID[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(6): 895-902. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李飞,朱喆,黄江涛,王春阳,刘刚.软式空中加油主动增稳锥套控制研究[J].航空工程进展,2024,15(6):255-267

复制
分享
文章指标
  • 点击次数:35
  • 下载次数: 104
  • HTML阅读次数: 22
  • 引用次数: 0
历史
  • 收稿日期:2024-03-18
  • 最后修改日期:2024-09-14
  • 录用日期:2024-09-19
  • 在线发布日期: 2024-11-05