主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
基于K-LSTM模型的卫星定位误差估计方法
DOI:
作者:
作者单位:

1.中国民航大学;2.中国民航大学 电子信息与自动化学院;3.上海飞机设计研究院

作者简介:

通讯作者:

中图分类号:

TN965.5

基金项目:

国家重点研发计划(2022YFB3904304)


LIU Ruihua1, LIU Zhiyang1,MA Zan2, Zheng Zhiming3, Zhong Kelin3
Author:
Affiliation:

1.College of Electronic Information and Automation, Civil Aviation University of China;2.College of Safety Science and Engineering, Civil Aviation University of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着全球卫星导航系统(GNSS)的发展,基于卫星的定位技术已成为航空导航的重要数据来源。然而,在无人驾驶城市空中交通(UAM)应用场景下,卫星定位易受多径(MP)和非视距(NLOS)信号的影响导致定位精度恶化,影响飞行安全。为了解决这一问题,提出K-LSTM 模型的卫星定位误差估计方法,采用Kmeans聚类方法检测MP/NLOS 信号,研究在不同环境下卫星观测数据与定位误差之间的关系,并在长短时记忆(LSTM)神经网络的基础上增加丢弃层、ReLU 层、全连接层和回归层来扩展网络模型,使用基于扩展LSTM模型预测MP/NLOS 信号的定位误差并进行改正。结果表明:在静态城市峡谷和动态地面反射环境中,MP/NLOS 信号经扩展LSTM 模型校正后东、北、天方向定位误差与校正前相比明显减小,定位精度显著提升。

    Abstract:

    With the development of Global Navigation Satellite System (GNSS), satellite-based positioning technology has become an important data source for aviation navigation. However, in scenarios involving unmanned urban air mobility (UAM) applications, satellite positioning is susceptible to multipath (MP) and non-line-of-sight (NLOS) signals leading to deterioration in positioning accuracy, posing a challenge to aircraft safety. To address this problem, a proposed method utilizes the K-LSTM model for satellite positioning error estimation. Firstly, the K-means clustering method is used to detect MP/NLOS signals. Secondly, investigating the relationship between satellite observations and positioning errors in different environments and extending the network model. This extension involves adding a droupout layer, a ReLU layer, a fully-connected layer, and a regression layer on top of the Long Short-Term Memory (LSTM) neural network. Finally, using the extended LSTM model to estimate and correct the localization error caused by MP/NLOS signals. The experimental results reveal that in the static urban canyon environment, the localization errors of the clustered MP/NLOS signals are 0.6m, 0.9m, and 1.0m in the east, north, and up directions, respectively, after the correction by the extended LSTM model. Additionally, the localization errors in the dynamic reflection environment are 1.5m, 1.0m, and 2.5m in the east, north, and up directions, respectively. These results demonstrate significant enhancements in localization accuracies compared to the pre-correction errors.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-24
  • 最后修改日期:2024-07-13
  • 录用日期:2024-07-27
  • 在线发布日期: 2025-04-02
  • 出版日期: