主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
基于LSTM的民用飞机重着陆风险预测评估研究
作者:
作者单位:

中国民用航空飞行学院 飞行技术学院

作者简介:

通讯作者:

中图分类号:

V328.3

基金项目:

国家自然科学基金民航联合基金重点项目(U2133209); 民航安全能力建设基金(ASSA2022/239);中国民用航空飞行学院科研创新团队基金((JG2022-23)


Research on heavy landing risk prediction and evaluationof airplane based on LSTM
Author:
Affiliation:

1.School of flight Technology,Civil Aviation Flight University of China,Guanghan Sichuan 618307;2.China

Fund Project:

Key project of Civil Aviation Joint Fund of National Natural Science Foundation(U2133209);Civil Aviation Safety Capacity Building Fund(ASSA2022/239);Research and Innovation Team Fund of Civil Aviation Flight University of China(JG2022-23)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    民用飞机重着陆容易造成飞机结构损伤,重着陆风险预测与评估对于降低民用飞机重着陆风险、提升民航运行安全是非常重要和必要的。利用QAR 数据和LSTM 神经网络建立重着陆风险预测模型,通过计算垂 直加速度的概率密度函数对发生重着陆的可能性和严重性进行计算,得到风险值;对飞机着陆时起落架受力进行分析,选取垂直加速度(着陆载荷)、下降率、横滚角、横向加速度和俯仰角作为重着陆的影响参数,利用LSTM 神经网络对航班的着陆载荷进行训练,建立重着陆风险表。通过QAR 数据进行参数训练,使用该模型预测航班的着陆载荷并验证其准确度,参照风险等级表确定重着陆风险。结果表明:预测值与实际值的均方根误差和平均绝对误差都达到了10-3 量级,实现了量化重着陆风险和重着陆风险预测。本文所建立的预测模型可为民用飞机着陆安全风险管理提供理论依据。

    Abstract:

    Heavy landing of airplane is easy to cause airplane structural damage. Studying the prediction and assessment of heavy landing risks for airplane is very important and necessary for reducing the risk of heavy landing and improving the safety of civil aviation operations. A heavy landing risk prediction model is established by using QAR data and LSTM neural network. By calculating the probability density function of vertical acceleration, the possibility and severity of heavy landing are calculated to obtain the risk value; Based on the analysis of landing gear force during landing, vertical acceleration (landing load), descent rate, roll Angle, lateral acceleration and pitch Angle are selected as the influencing parameters of heavy landing. LSTM neural network is used to train the landing load of the flight, and the landing risk table is established. Through the parameter training of QAR data, the model is used to predict the landing load of the flight and verify its accuracy, and the risk of heavy landing is determined with reference to the risk grade table. The simulation results show that the RMSE and MAE of the predicted value and the actual value both reach the order of 10-3, and the quantitative heavy landing risk and heavy landing risk prediction are realized. The prediction model established by the research can provide theoretical basis for airplane landing safety risk management.

    参考文献
    相似文献
    引证文献
引用本文

何健,钱宇,唐盛香.基于LSTM的民用飞机重着陆风险预测评估研究[J].航空工程进展,2025,16(5):51-57

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-29
  • 最后修改日期:2024-05-27
  • 录用日期:2024-06-06
  • 在线发布日期: 2025-04-11
  • 出版日期: