主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
基于机器学习的进近扇区动态通行能力研究
DOI:
作者:
作者单位:

1.南京航空航天大学;2.南京航空航天大学 民航学院

作者简介:

通讯作者:

中图分类号:

V355

基金项目:

国家重点研发计划资助(项目编号:2022YFB2602401);江苏省自然科学基金面上项目(BK20231447)


Research on approach sector dynamic capacity based on machine learning
Author:
Affiliation:

Nanjing University of Aeronautics and Astronautics,Nanjing

Fund Project:

National Key R&D Program of China(No.2022YFB2602401);Natural Science Foundation of Jiangsu Province (BK20190414)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    扇区复杂度的研究可有效提升扇区动态通行能力评估的精度,为空中流量决策提供参考。首先建立进离场边潜在超越冲突复杂度、关键冲突节点复杂度指标,对不同动态交通影响进行量化;其次借助机器学习对不同特征与扇区通过航空器数量进行训练与测试,得到两者映射关系,该模型可用于预测不同交通流配置下的扇区通行能力;最后使用某复杂终端16 号进近管制扇区的一周实际运行数据进行实例验证。结果表明:该机器学习模型可用于扇区动态通行能力的精细化预测评估,且不同的流量配置会对扇区动态通行能力产生影响,进离较均衡阶段示例扇区动态通行能力达到最大14 架次/15 分钟。此外,本文应用SHAPley 加性解释量化各特征对扇区预测通行能力的贡献,可为扇区后续规划设计提供参考。

    Abstract:

    The study of sector complexity can effectively improve the accuracy of sector dynamic capacity assessment and provide reference for air traffic decision-making. This paper firstly establishes the approach and departure procedures’ potential exceeding conflict complexity metrics and key conflict node complexity metrics to quantify the impacts of different dynamic traffic indicators; secondly, using machine learning to train and test the different features and the number of passing aircraft in the sector and get the mapping relationship, the model can be used to predict the sector traffic capacity under different traffic flow configurations; finally, uses the one-week operation data of AP16 from complex terminal for example verification, and the result shows that the machine model can be predicted the sector traffic capacity. The results show different traffic configurations would have an impact on sector capacity, and the dynamic capacity of the sector in the nearly balanced phase of approach and departure reached a maximum of 15 flights/15min. In addition, this paper applies Shapley"s additive interpretation to quantify the contribution of each feature to the predicted sector capacity, which can provide a reference for the subsequent planning and design of the sector.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-09
  • 最后修改日期:2024-06-18
  • 录用日期:2024-06-24
  • 在线发布日期: 2025-04-18
  • 出版日期: