主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
基于STPA和模糊贝叶斯网络的大型无人驾驶航空器运行风险分析
DOI:
作者:
作者单位:

中国民航大学安全科学与工程学院

作者简介:

通讯作者:

中图分类号:

X949

基金项目:


Operational Risk Analysis of Large Unmanned Aerial Vehicles Based on STPA and Fuzzy Bayesian Networks
Author:
Affiliation:

College of Safety Science and Engineering, Civil Aviation University of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    仅采用系统理论过程分析(STPA)方法识别运行危险因素,处于定性分析阶段,无法准确分析各因素对系统安全的影响程度。为降低大型无人驾驶航空器运行事故风险,对其运行过程中主要角色职责和场景进行分析,采用STPA 方法构建控制反馈结构识别危险因素;基于因素间的关联关系构建贝叶斯网络(BN),使用GeNIe 软件对风险概率进行正向因果推理,并通过逆向推理、敏感性分析、影响强度分析确定关键因素等。结果表明:控制失效是导致事故发生的最关键因素,导航系统故障、恶劣天气、电池故障是高敏感性因素,本文分析结果能够为大型无人驾驶航空器运行风险防控提供依据。

    Abstract:

    In order to meet the arrival of large unmanned aerial vehicles and reduce the probability of accidents, the main roles and responsibilities and scenarios in the operation process were analyzed, and the control feedback structure in the operation process was constructed by using the System Theory Process Analysis Method (STPA) to identify the risk factors that lead to accidents. Based on the correlation between factors, the Bayesian network (BN) was constructed, and the GeNIe software was used to carry out forward causal inference on the risk probability, and the key factors were determined through reverse reasoning, sensitivity analysis and impact intensity analysis. The results show that control failure is the most critical factor leading to accidents. Navigation system failure, bad weather, and battery failure are highly sensitive factors, and the analysis results can provide a basis for the prevention and control of large-scale unmanned aircraft operation risks.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-11
  • 最后修改日期:2024-08-10
  • 录用日期:2024-09-14
  • 在线发布日期: 2025-05-07
  • 出版日期: