摘要
高超声速飞行器表面结构,如发动机叶片、内涵道及其排气道等暴露在高温强噪声复合环境中,容易出现热声疲劳损伤问题,因此,结构热声疲劳问题引起了广泛关注。热声疲劳研究对增强这类结构的耐久性和可靠性具有重要意义。本文总结了国内外在飞行器结构热声疲劳领域的研究现状,阐述了在热声疲劳理论研究、仿真分析和试验技术方面所取得的进步。从时间维度回顾了国外自20世纪70年代至今在结构热声疲劳领域的研究情况;按研究单位分类介绍了国内科研院所和高等院校在该领域所开展的工作。在此基础上分析了飞行器结构热声疲劳研究所面临的技术难点问题,指出了尚需进一步研究的方向。
随着航空航天技术的迅猛发展,飞行器热声耦合环境下的结构疲劳问题愈加突出。热声载荷作用下疲劳寿命预测是当前高超声速飞行器、先进隐身飞机等结构设计的关键技术之一。对于高超声速飞行器而言,由于其飞行环境十分苛刻,蒙皮、发动机机匣、火焰筒壁板和涡轮叶片等结构会受到高温及强噪声环境影响,热防护层表面温度甚至高达1 600 ℃以上,总声压级可达180 d
先进隐身飞机通常采用扁平升力体布局,将进气道和发动机排气道内置,排气道结构在发动机尾流高温、强噪声载荷作用下,其完整性和耐久性受到严重考验,容易出现振动响应大、应力水平高等问题,进而导致管壁结构开裂或连接件失效。例如,在B-2飞机的使用维护中,美国空军在多架飞机发动机排气口后面的钛合金面板上,发现了长短不一的裂缝,有的不到1 in(1 in=0.025 4 m),有的则长达9 i
目前国内外学者和工程技术人员针对飞行器热声疲劳问题开展了大量的理论分析、数值仿真和试验研究,研究对象主要包括高超声速飞行器热防护或薄壁结构,发动机叶片、燃烧室或排气道结构等,涵盖金属材料和复合材料,形成了一些有效的分析方法和试验技术。本文通过整理归纳飞行器热声疲劳相关文献资料,总结国内外在该领域的研究现状,并指出目前结构热声疲劳问题研究所面临的技术难点和后续发展方向。
国外在结构热声疲劳领域的研究起步较早,目前已取得较为丰硕的研究成果,本节将按时间维度对国外研究进展进行论述。
自20世纪70年代起,国外研究人员就开始探索航空航天金属薄壁结构在热声环境下的动态响应和疲劳的分析与试验问
1991年,Ng

图1 国外热声疲劳试验发展历程
Fig.1 Development history of foreign thermaoacoustic fatigue test
21世纪以来,国外针对热声疲劳的研究热度不减。2000年,Chilakamarri

图2 表面温度分
Fig.2 Skin surface temperature distributio

(a) 上表面

(b) 下表面
图3 上下表面总声压级分
Fig.3 Overall sound pressure levels distribution on upper surface and lower surfac
2010年,ATA公司在Wright-Patterson空军试验室的委托下,利用Abaqus软件开展了高超声速飞行器在脉动压力作用下壁板的跳变屈曲研究,捕捉到了两种稳定屈曲平衡位置之间的跳变响应现

图4 热声疲劳试验装置示意
Fig.4 Schematic of thermal acoustic fatigue apparatu
从国外研究现状来看,通常运用FSDT、层合板理论和冯·卡门大变形公式来建立结构数学模型;仿真或试验温度可达2 000

(a) 美国NASA Langley

(b) 美国AFRL

(c) 英国BAE

(d) 德国IABO
图5 国外热声试验设
Fig.5 Foreign thermal acoustic facilitie
国内在结构热声疲劳领域的研究虽然起步较晚,但进展迅速,本节分单位对研究现状进行论述。
北京强度环境研究所的吴振强
20世纪末,中国飞机强度研究所的葛森
北京卫星环境工程研究所的Yao Z M

图6 热—声—振耦合试验装
Fig.6 Thermo-acoustic-vibration-combined test equipmen
中国航发研究院的张东明
北京机电工程研究所的王晓飞

图7 行波管热声试验系
Fig.7 Progressive wave tube thermal-acoustic test syste
在国内高校中,沈阳航空航天大学对热— 声—固耦合问题的研究较为丰富和深入。其中,艾延廷教授团

图8 燃烧室结构段试验件和试验现
Fig.8 Specimens for testing and overall layou
(a) 试验件 (b) 试验现场布置
沙云东教授团

图9 GH188平板热声试验现
Fig.9 Thermal-acoustic test of GH188 plan
国内其他一些高校也对结构热—声—振问题开展了研究,包括:中国科学技术大学、西北工业大学、哈尔滨工业大学、哈尔滨工程大学、北京理工大学、东南大学、南昌航空大学等。中国科学技术大学的王
从国内研究现状来看,在方法层面主要继承了国外热声分析理论,通常采用商用有限元软件(Abaqus、Nastran或Ansys)开展结构热声相关问题的仿真分析;仿真或试验温度在1 000 ℃左右,总声压级可达165 dB以上;研究对象主要为金属或复合材料元件级或组件级(壁板、叶片)结构;尚未查到有关热声响应与疲劳分析软件及大型热声试验专用设备的公开报道。
从上述文献综述来看,为了促进高精尖航空航天装备(高超声速飞行器、空天飞机、隐身飞机、先进发动机等)的发展,热声环境下结构疲劳问题自20世纪70年代起一直是研究的热点。研究者们不断提出新的理论方法,开发新的分析工具,研制新的试验设备,完善设计与评估体系。相信随着科技的进步,热声疲劳分析技术会向着精度和效率更高的方向发展,试验验证技术也会向着适用范围更广的方向进步。同时也应看到,国内相比国外在技术水平上仍然存在一定的差距,主要包括:缺少理论方法的突破,结构热声耦合理论和疲劳损伤模型等主要依据国外已有理论;暂无自主研发的成熟度较高的分析工具,仿真分析往往借助国外商用工程软件;缺乏大型可满足工程需求的热声疲劳试验设备,例如英、美、俄等国的热声试验设施试验段尺寸可达1.2 m,而国内试验平台相对较
尽管国内外的研究人员及研究机构针对结构的热声响应计算与疲劳寿命预测已经做了大量研究并发表了许多具有建设性的研究成果,但仍有一些关键问题需要解决,主要包括:1) 在理论方面,关注热对结构刚度影响的研究较多,而对热致阻尼、热梯度效应以及热声疲劳失效模式和机理的探索不够;2) 在仿真方面,针对热力固耦合、热流固耦合、热声固耦合、热振固耦合的数值模拟已实现,但符合工程需求的多场耦合仿真以及综合损伤评定技术成熟度仍显不足;3) 在试验方面,通常开展元件、壁板组件或部件局部结构的热声疲劳试验,尚缺少大型全尺寸结构的试验研究。
为了解决目前飞行器热声疲劳分析与验证所面临的实际工程问题,建议后续针对以下方面开展进一步的研究:1) 精准预测热声动态载荷,以实现热环境下复杂流场的高精度预测,为编制热声载荷谱提供输入;2) 编制热声疲劳载荷谱,探索基于损伤等效的多工况热声载荷谱的归一谱和疲劳试验加速谱,为结构热声疲劳分析和验证提供输入;3) 持续深化多场耦合分析技术,提升非定常与非线性分析理论,建立更加精细与高效的一体化模型;4) 预计承载薄壁结构热声耦合损伤,辨识复杂薄壁结构的热声疲劳失效模式和机理,构建准确高效的寿命预估模型;5) 建立常用航空航天材料以及新材料的高温动态疲劳性能数据库,为预计结构热声疲劳寿命提供基础数据;6) 研制大尺寸高热强声(尺寸2 m级、声压级180 dB、温度 2 000 ℃)耦合环境模拟装置,以支持大型飞行器结构在极端热声环境下的疲劳损伤演化试验;7) 关注整个服役期内飞行器金属结构或复合材料结构所面临热环境的差异(中温、高温、超高温),建立适用于不同温度范围的热—声—振等多场疲劳评估技术。
参 考 文 献
BLEVINS R D, BOFILIOS D, HOLEHOUSE I, et al. Thermo-vibro-aco ustic loads and fatigue of hypersonic flight vehicle structure: AFRL-RB-WP-TR-2009-3139[R]. Ohio: Air Force Research Laboratory, 2009. [百度学术]
扬子晚报. B-2轰炸机大半开了裂[EB/OL]. (2002-03-21)[2024-02-18]. https:∥ news.sina.cn/sa/2002-03-21/detail-ikkntiak6964493.d.html. [百度学术]
Yangtze Evening News. Most of B-2 bomber cracked[EB/OL]. (2002-03-21)[2024-02-18]. https:∥ news.sina.cn/sa/2002-03-21/detail-ikkntiak6964493.d.html.(in Chinese) [百度学术]
百度文库. 诺斯罗普B-2“幽灵”轰炸机的诞生[EB/OL].(2008-02-23)[2024-02-18]. https:∥ wk.baidu.com/view/cc7207fb657d27274b73f242336c1eb91b339b?pcf=2.html. [百度学术]
Baidu Wenku. The birth of Northrop B-2 'Spirit' stealth bomber[EB/OL]. (2008-02-23)[2024-02-18] https:∥ wk.baidu.com/view/cc7207fb657d27274b73f242336c1eb91b339b?pcf=2.html.(in Chinese) [百度学术]
艾思泽. 热—声—流—固耦合作用下薄壁结构疲劳寿命预估[D]. 沈阳: 沈阳航空航天大学, 2019. [百度学术]
AI Size. Fatigue life prediction of thin-wall structures under thermal-acoustic-flux-solid interaction[D]. Shenyang: Shenyang Aerospace University, 2019.(in Chinese) [百度学术]
HIEKEN M H, NOONAN W E, SHROYER E F. Sonic fatigue test methods at elevated temperatures: AFFDL-TR-73-8[R]. US: Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, 1973. [百度学术]
SCHNEIDER C W. Acoustic fatigue of aircraft structures at elevated temperatures: AFFDL-TR-73-155[R]. Bethesda: Lockheed-Georgia Company, 1974. [百度学术]
MAEKAWA S. On the sonic fatigue life estimation of skin structures at room and elevated temperatures[J]. Journal of Sound and Vibration, 1982, 80(1): 41-59. [百度学术]
SOOVERE J. The effect of acoustic/thermal environments on advanced composite fuselage panels[J]. Journal of Aircraft, 1985, 22(4): 257-263. [百度学术]
JACOBSON M J. Sonic fatigue of advanced composite panels in thermal environments[J]. Journal of Aircraft, 1983, 20(3): 282-288. [百度学术]
MEI C. Prediction of response of aircraft panels subjected to acoustic and thermal loads: no report number, Old Dominion University: 23529-0247[R]. Norfolk: Dominion University, 1992. [百度学术]
ARNOLD R R, VAICAITIS R. Nonlinear response and fatigue of surface panels by the time domain Monte Carlo approach: WRDC-TR-3081[R]. [S.l.]: Anamet Laboratories Inc., 1992. [百度学术]
NG C, WENTZ K. The prediction and measurement of thermoacoustic response of plate structures[C]∥ 31st Structures, Structural Dynamics and Materials Conference. Long Beach, CA, USA: AIAA, 1990: 988-991. [百度学术]
LEUNG E W, BAROTH E, CHAN C K, et al. Thermal acoustic interaction and flow phenomenon[C]∥ AIP Conference Proceedings. Monterey, California (USA): AIP, 1990: 1-10. [百度学术]
NG C F, CLEVENSON S A. High-intensity acoustic tests of a thermally stressed plate[J]. Journal of Aircraft, 1991, 28(4): 275-281. [百度学术]
LEE J. Large-amplitude plate vibration in an elevated thermal environment[J]. Applied Mechanics Reviews, 1993, 46(11S): S242-S254. [百度学术]
CLEVENSON S A, DANIELS E F. Capabilities of the thermal acoustic fatigue apparatus: NASA-TM-104106[R]. Washington D.C.: NASA, 1992. [百度学术]
JACOBS J, GRUENSFELDER C, HEDGECOCK C. Thermal-acoustic future fatigue of ceramic matric composite materials[C]∥ 34th Structures, Structural Dynamics and Materials Conference. La Jolla, CA, USA: AIAA, 1993: 1319-1328. [百度学术]
BLEVINS R D, HOLEHOUSE I, WENTZ K R. Thermoacoustic loads and fatigue of hypersonic vehicle skin panels[J]. Journal of Aircraft, 1993, 30(6): 971-978. [百度学术]
RIZZI S. Experimental research activities in dynamic response and sonic fatigue of hypersonic vehicle structures at NASA Langley Research Center[C]∥ 31st Aerospace Sciences Meeting. Reno, NV, USA: AIAA, 1993: 383-397. [百度学术]
VAICAITIS R. Nonlinear response and sonic fatigue of National Aerospace Space Plane surface panels[J]. Journal of Aircraft, 1994, 31(1): 10-18. [百度学术]
MEI C, MOORTHY J. Numerical simulation of the nonlinear response of composite plates under combined thermal and acoustic loading: NASA-CR-197426[R]. Hampton: NASA, 1995. [百度学术]
MURPHY K D, VIRGIN L N, RIZZI S A. Characterizing the dynamic response of a thermally loaded, acoustically excited plate[J]. Journal of Sound and Vibration, 1996, 196(5): 635-658. [百度学术]
MURPHY K D, VIRGIN L N, RIZZI S A. Experimental snap-through boundaries for acoustically excited, thermally buckled plates[J]. Experimental Mechanics, 1996, 36(4): 312-317. [百度学术]
CHILAKAMARRI K B, LEE J. Thermal-acoustic fatigue damage accumulation model of random snap-throughs[C]∥ 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability. Souuth Bend: PMC, 2000: 1-6. [百度学术]
MEI C, DHAINAUT J M, DUAN B, et al. Nonlinear random response of composite panels in an elevated thermal environment: AFRL-VA-WP-TR-2000-3049[R]. Norfolk: Old Dominion University, 2000. [百度学术]
DHAINAUT J M, GUO X Y, MEI C, et al. Nonlinear random response of panels in an elevated thermal-acoustic environment[J]. Journal of Aircraft, 2003, 40(4): 683-691. [百度学术]
KIM K, YANG B, MIGNOLET M P. Fatigue Life prediction of panels subjected to thermo-acoustic loading[C]∥ SDM-51: Plate Dynamic Problems. Norfolk, Virginia: ARC, 2003: 1-9. [百度学术]
CHEN P C, GAO X W, LIU D. Rapid fatigue life projection for thermal and acoustic loads: AFRL-VA-WP-TR-2003-3063[R]. [S.l.]: Zona Technology Inc., 2003. [百度学术]
RADU A, KIM K, YANG B, et al. Prediction of the dynamic response and fatigue life of panels subjected to thermo-acoustic loading[C]∥ 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Palm Springs, California, USA: AIAA, 2004: 1557. [百度学术]
IBRAHIM H H, TAWFIK M, NEGM H M. Thermoacoustic random response of shape memory alloy hybrid composite plates[J]. Journal of Aircraft, 2008, 45(3): 962-970. [百度学术]
MISKOVISH R S, SHAH D P. Predicting snap-through of a thin-walled panel due to thermal and acoustic loads[C]∥ 2010 SIMULIA Customer Conference. San Diego, California: ATA Engineering, 2010: 1-15. [百度学术]
IBRAHIM H H, YOO H H, TAWFIK M, et al. Thermo-acoustic random response of temperature-dependent functionally graded material panels[J]. Computational Mechanics, 2010, 46(3): 377-386. [百度学术]
TZONG G T, LIGUORE S L. Verification studies on hypersonic structure thermal/acoustic response and life prediction methods[C]∥ 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Boston, Massachusetts: AIAA, 2013: 1664-1682. [百度学术]
PICELLI R, KIM H A. Design optimization of an aircraft structure considering thermal-acoustic loads[C]∥ 2018 Multidisciplinary Analysis and Optimization Conference. Atlanta, Georgia, USA: AIAA, 2018: 3883-3901. [百度学术]
KIM Y N, PARK J S, GO E S, et al. Nonlinear random response analyses of panels considering transverse shear deformations under combined thermal and acoustic loads[J]. Shock and Vibration, 2018(1): 15-31. [百度学术]
GO E S, KIM M G, KIM I G, et al. Fatigue life prediction in frequency domain using thermal-acoustic loading test results of titanium specimen[J]. Journal of Mechanical Science and Technology, 2020, 34(10): 4015-4024. [百度学术]
LEE H B, KIM Y N, CHOI I J, et al. Nonlinear dynamic responses of shear-deformable composite panels under combined supersonic aerodynamic, thermal, and random acoustic loads[J]. International Journal of Aeronautical and Space Sciences, 2020, 21(3): 707-722. [百度学术]
GO E S, KIM M G, MOON Y S, et al. Experimental study on dynamic behavior of a titanium specimen using the thermal-acoustic fatigue apparatus[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2020, 48(2): 127-134. [百度学术]
吴振强, 任方, 张伟, 等. 飞行器结构热噪声试验的研究进展[J]. 导弹与航天运载技术, 2010(2): 24-30. [百度学术]
WU Zhenqiang, REN Fang, ZHANG Wei, et al. Research advances in thermal-acoustic testing of aerocraft structures[J]. Missiles and Space Vehicles, 2010(2): 24-30.(in Chinese) [百度学术]
程昊, 张正平, 李海波, 等. 边界条件对壁板结构热噪声试验影响研究[C]∥ 第十届动力学与控制学术会议论文集. 成都: 中国力学学会, 2016: 249-250. [百度学术]
CHENG Hao, ZHANG Zhengping, LI Haibo, et al. Study on the influence of boundary conditions on thermal noise testing of wall plate structures[C]∥ Proceedings of the 10th Conference on Dynamics and Control. Chengdu: CSTAM, 2016: 249-250.(in Chinese) [百度学术]
刘宝瑞, 孔凡金, 程昊, 等. 热噪声试验条件下复合材料舵结构热变形分析[C]∥ 第三届中国国际复合材料科技大会. 杭州: 中国复合材料学会, 2017: 16-19. [百度学术]
LIU Baorui, KONG Fanjin, CHENG Hao, et al. Thermal deformation analysis of composite rudder structures under thermal noise test conditions[C]∥ The 3rd China International Conference on Composite Materials Technology. Hangzhou: Chinese Society for Composite Materials, 2017: 16-19. (in Chinese) [百度学术]
吴振强, 任方, 程昊, 等. 陶瓷基复合材料薄壁结构热噪声强度问题研究[C]∥ 第二十一届全国复合材料学术会议. 呼和浩特: 中国航空学会, 2020: 50. [百度学术]
WU Zhenqiang, REN Fang, CHENG Hao, et al. Research on the thermal noise intensity of thin wall structure of ceramic matrix composite material[C]∥ The 21st National Conference on Composite Materials. Hohhot: CAAC, 2020: 50. (in Chinese) [百度学术]
张部声, 祝济之, 史剑, 等. 某型钛铝合金航空发动机叶片高温高周振动疲劳实验[J]. 航空动力学报, 2020, 35(6): 1169-1175. [百度学术]
ZHANG Busheng, ZHU Jizhi, SHI Jian, et al. Test of vibration fatigue for the TiAl alloy aeroengine blade at high temperature and high cycle[J]. Journal of Aerospace Power, 2020, 35(6): 1169-1175.(in Chinese) [百度学术]
张正平. 飞行器结构热噪声强度基础[M]. 北京: 科学出版社, 2020. [百度学术]
ZHANG Zhengping. Fundamentals of thermal noise intensity in aircraft structure[M]. Beijing: Science Press, 2020. (in Chinese) [百度学术]
葛森, 曹琦, 邵闯, 等. 一种获得高温声疲劳S-N曲线的新方法[J]. 航空学报, 1997, 18(1): 75-77. [百度学术]
GE Sen, CAO Qi, SHAO Chuang, et al. New method for obtaining sonic fatigue S-N curves at elevated temperature[J]. Acta Aeronautica et Astronautica Sinica, 1997, 18(1): 75-77.(in Chinese) [百度学术]
葛森, 曹琦, 邵闯, 等. 飞机壁板结构的高温声疲劳试验方法[J]. 实验力学, 1997, 12(4): 109-114. [百度学术]
GE Sen, CAO Qi, SHAO Chuang, et al. Testing method for the sonic fatigue of aircraft panel structure at elevated temperature[J]. Journal of Experimental Mechanics, 1997, 12(4): 109-114.(in Chinese) [百度学术]
葛森. 飞机壁板高温声疲劳特性分析[D]. 西安: 西北工业大学, 1999. [百度学术]
GE Sen. Analysis of high temperature acoustic fatigue characteristics of aircraft panels[D]. Xi’an: Northwestern Polytechnical University, 1999. (in Chinese) [百度学术]
张维, 邹学锋, 万春华. 热环境下薄壁结构随机振动响应分析[J]. 工程与试验, 2017, 57(4): 17-21,73. [百度学术]
ZHANG Wei, ZOU Xuefeng, WAN Chunhua. Random vibration response analysis of thin-walled structure in thermal environment[J]. Engineering & Test, 2017, 57(4): 17-21,73.(in Chinese) [百度学术]
邹学锋, 郭定文, 燕群, 等. 飞行器结构热/力/振动/噪声多场试验方法与工程实践[C]∥ 中国航空学会声学分会2020年度线上学术交流会论文集. 北京: 中国航空学会, 2020: 57. [百度学术]
ZOU Xuefeng, GUO Dingwen, YAN Qun, et al. Multifield test method and engineering practice for thermal vibration and noise of aircraft structure[C]∥ 2020 Online Academic Exchange Meeting of the Acoustic Branch of the Chinese Society of Aeronautics and Astronautics. Beijing: CSAA, 2020: 57. (in Chinese) [百度学术]
周红卫, 燕群, 邹学锋, 等. 热声联合载荷作用下薄板几何非线性振动分析方法研究[C]∥ 中国航空学会声学分会2020年度线上学术交流会论文集. 北京: 中国航空学会, 2020: 52-53. [百度学术]
ZHOU Hongwei, YAN Qun, ZOU Xuefeng, et al. Research on geometric nonlinear vibration analysis method of thin plate under combined thermo-acoustic load[C]∥ 2020 Online Academic Exchange Meeting of the Acoustic Branch of the Chinese Society of Aeronautics and Astronautics. Beijing: CSAA, 2020: 52-53. (in Chinese) [百度学术]
ZHOU H W, XIE L, GUO D W, et al. Analysis and experimental validation for a simplified flame tube subjected to combined thermal-acoustic loadings[M]. Singapore: Springer Singapore, 2021: 669-678. [百度学术]
YAO Z M, HUANG S Q, YANG J, et al. Experimental research on thermal-acoustic-vibration coupling effects of thin-walled blades[C]∥ 2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE). Zhangjiajie, China: IEEE, 2019: 161-166. [百度学术]
HUANG S Q, YAO Z M, LIU S W, et al. Experimental and simulation study on the response characteristics of engine blades under thermo-acoustic-vibration load[J]. Journal of Vibration and Acoustics, 2020, 142(4): 041013. [百度学术]
张东明, 柳恩杰. 航空发动机涡轮叶片高温振动疲劳试验的新方法[J]. 航空发动机, 2005, 31(1): 18-21. [百度学术]
ZHANG Dongming, LIU Enjie. A new approach of the vibration endurance test at high temperature for engine turbine blade[J]. Aeroengine, 2005, 31(1): 18-21.(in Chinese) [百度学术]
YU W J, WANG X F, HUANG X. Dynamic modelling of heat transfer in thermal-acoustic fatigue tests[J]. Aerospace Science and Technology, 2017, 71: 675-684. [百度学术]
魏巍, 袁巍, 武昌耀. 某航空发动机环形燃烧室火焰筒振动与声学特性研究[C]∥ 第五届空天动力联合会议. 南京: 中国科协, 2020: 2285-2291. [百度学术]
WEI Wei, YUAN Wei, WU Changyao. Research on the vibration and acoustic characteristics of a totoidal combustor flame tube in an aeroengine[C]∥ The 5th Joint Conference on Aerospace Power. Nanjing: CAST, 2020: 2285-2291. (in Chinese) [百度学术]
王晓飞, 王圣刚, 麻连净. 一种典型C/SiC构型件的热噪声适应性试验研究[J]. 航天器环境工程, 2021, 38(1): 46-49. [百度学术]
WANG Xiaofei, WANG Shenggang, MA Lianjing. Experimental research of thermal-acoustic adaptability of a typically-configured C/SiC specimen[J]. Spacecraft Environment Engineering, 2021, 38(1): 46-49.(in Chinese) [百度学术]
潘宏刚, 艾延廷, 王成军. 航空发动机燃烧室模型热—声—固耦合试验装置设计研究[J]. 科技信息, 2010(30): 526. [百度学术]
PAN Honggang, AI Yanting, WANG Chengjun. Design and study of thermal-acoustic-solid coupling test equipment for aeroengine combustion chamber model[J]. Science & Technology Information, 2010(30): 526.(in Chinese) [百度学术]
郭晓玲. 声激励下的燃烧室模型结构振动响应计算[D]. 沈阳: 沈阳航空航天大学, 2013. [百度学术]
GUO Xiaoling. Response calculation of the combustion chamber structure vibration under the acoustic excitation[D]. Shenyang: Shenyang Aerospace University, 2013. (in Chinese) [百度学术]
艾延廷, 王昌旭, 郭晓玲. 燃烧室结构—声耦合特性研究[J]. 中国机械工程, 2014, 25(15): 2008-2012. [百度学术]
AI Yanting, WANG Changxu, GUO Xiaoling. Vibro-acoustic coupling analysis of combustion chamber[J]. China Mechanical Engineering, 2014, 25(15): 2008-2012.(in Chinese) [百度学术]
艾延廷, 韩雷, 王昌旭. 燃烧室热—声—结构耦合特性研究[J]. 机械设计与制造, 2014(12): 258-261. [百度学术]
AI Yanting, HAN Lei, WANG Changxu. Research on the characteristics of thermal-acoustic-structural coupling in a combustion chamber[J]. Machinery Design & Manufacture, 2014(12): 258-261.(in Chinese) [百度学术]
艾延廷, 韩雷, 许星元, 等. 燃烧室热—声—结构耦合数值研究[J]. 科学技术与工程, 2015, 15(5): 155-161. [百度学术]
AI Yanting, HAN Lei, XU Xingyuan, et al. Numerical investigation of thermal-acoustic-structural coupling in combustion chamber[J]. Science Technology and Engineering, 2015, 15(5): 155-161.(in Chinese) [百度学术]
艾延廷, 刘晓振, 王成军, 等. 燃烧室热—声—固耦合数值模拟研究[J]. 科学技术与工程, 2017, 17(6): 301-307. [百度学术]
AI Yanting, LIU Xiaozhen, WANG Chengjun, et al. Numerical investigation of thermal-acoustic-structural coupling in combustion chamber[J]. Science Technology and Engineering, 2017, 17(6): 301-307.(in Chinese) [百度学术]
刘晓振. 燃烧室热—声—固耦合数值模拟与试验研究[D]. 沈阳: 沈阳航空航天大学, 2017. [百度学术]
LIU Xiaozhen. Numerical simulation and experiment investigation of thermal-acoustic-structural coupling in combustion chamber[D]. Shenyang: Shenyang Aerospace University, 2017. (in Chinese) [百度学术]
臧也. 燃烧室热—声—固耦合研究[D]. 沈阳: 沈阳航空航天大学, 2018. [百度学术]
ZANG Ye. Study on thermal-acoustic-structural coupling in combustion chamber[D]. Shenyang: Shenyang Aerospace University, 2018. (in Chinese) [百度学术]
臧也, 田晶, 张凤玲, 等. 燃烧室热—声激励及响应的模拟研究[J]. 沈阳航空航天大学学报, 2018, 35(2): 10-16. [百度学术]
ZANG Ye, TIAN Jing, ZHANG Fengling, et al. Simulation study on thermoacoustic excitation and response of combustion chamber[J]. Journal of Shenyang Aerospace University, 2018, 35(2): 10-16.(in Chinese) [百度学术]
CHINA N P U, GUAN P, AI Y T, et al. Study on thermal-acoustic-structural performance of aeroengine combustor based on coupled-field technology[C]∥ Proceedings of Global Power & Propulsion Society. Beijing: GPPS, 2019: 1-6. [百度学术]
杨光, 田晶, 艾延廷, 等. 热声激励下燃烧室热声固耦合特性数值研究[J]. 沈阳航空航天大学学报, 2019, 36(3): 14-21. [百度学术]
YANG Guang, TIAN Jing, AI Yanting, et al. Numerical study on thermoacoustic of combustion chamber subjected to thermoacoustic exciation[J]. Journal of Shenyang Aerospace University, 2019, 36(3): 14-21.(in Chinese) [百度学术]
张春月, 沙云东, 苏志敏. 航空薄壁结构高温声疲劳应力工程分析方法[J]. 沈阳航空工业学院学报, 2007, 24(1): 9-12. [百度学术]
ZHANG Chunyue, SHA Yundong, SU Zhimin. An analytical method response for the aircraft thin-wall structure in a combined thermal-acoustic environment[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2007, 24(1): 9-12.(in Chinese) [百度学术]
蒋娜娜, 沙云东, 鲍冬冬. 碳/碳复合材料薄壁结构在热声载荷作用下的动态响应[J]. 沈阳航空航天大学学报, 2012, 29(3): 16-20. [百度学术]
JIANG Nana, SHA Yundong, BAO Dongdong. Dynamic response of C/C composite thin-walled structure under thermo-acoustic loadings[J]. Journal of Shenyang Aerospace University, 2012, 29(3): 16-20.(in Chinese) [百度学术]
鲍冬冬, 沙云东, 蒋娜娜. 复合材料薄壁结构在热声载荷作用下的非线性动态响应特性分析[J]. 沈阳航空航天大学学报, 2013, 30(1): 39-42,65. [百度学术]
BAO Dongdong, SHA Yundong, JIANG Nana. Analysis of nonlinear dynamic response of composite thin-walled structure under thermo-acoustic loadings[J]. Journal of Shenyang Aerospace University, 2013, 30(1): 39-42,65.(in Chinese) [百度学术]
沙云东, 魏静, 高志军, 等. 热声激励下金属薄壁结构的随机疲劳寿命估算[J]. 振动与冲击, 2013, 32(10): 162-166,197. [百度学术]
SHA Yundong, WEI Jing, GAO Zhijun, et al. Random fatigue life prediction of metallic thin-walled structures under thermo-acoustic excitation[J]. Journal of Vibration and Shock, 2013, 32(10): 162-166,197.(in Chinese) [百度学术]
沙云东, 魏静, 高志军, 等. 热声载荷作用下薄壁结构的非线性响应特性[J]. 航空学报, 2013, 34(6): 1336-1346. [百度学术]
SHA Yundong, WEI Jing, GAO Zhijun, et al. Nonlinear response characteristics of thin-walled structures under thermo-acoustic loadings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1336-1346.(in Chinese) [百度学术]
揭晓博. 热声载荷下复合材料薄壁结构非线性响应特性研究[D]. 沈阳: 沈阳航空航天大学, 2014. [百度学术]
JIE Xiaobo. Research on nonlinear response characteristics of composite thin-walled structure subjected to thermo-acoustic loading[D]. Shenyang: Shenyang Aerospace University, 2014. (in Chinese) [百度学术]
朱林. 热声载荷下高温合金薄壁结构动态应力计算与分析[D]. 沈阳: 沈阳航空航天大学, 2014. [百度学术]
ZHU Lin. Dynamic stress calculation and analysis of high temperature alloy thin-walled structures under thermo-acoustic laods[D]. Shenyang: Shenyang Aerospace University, 2014. (in Chinese) [百度学术]
蒋娜娜, 魏静, 鲍冬冬, 等. 薄壁结构在热声环境中随机疲劳寿命的估算[J]. 沈阳航空航天大学学报, 2013, 30(1): 15-19. [百度学术]
JIANG Nana, WEI Jing, BAO Dongdong, et al. Fatigue life prediction of thin-walled structure under thermo-acoustic loadings[J]. Journal of Shenyang Aerospace University, 2013, 30(1): 15-19.(in Chinese) [百度学术]
SHA Y D, WEI J, GAO Z J, et al. Nonlinear response with snap-through and fatigue life prediction for panels to thermo-acoustic loadings[J]. Journal of Vibration and Control, 2014, 20(5): 679-697. [百度学术]
沙云东, 朱林, 栾孝驰, 等. 带有温度梯度的热载荷与声载荷作用下薄板动态响应[J]. 振动与冲击, 2014, 33(18): 102-109. [百度学术]
SHA Yundong, ZHU Lin, LUAN Xiaochi, et al. Dynamic response of thin plates under thermal loadings with temperature gradient and acoustic loadings[J]. Journal of Vibration and Shock, 2014, 33(18): 102-109.(in Chinese) [百度学术]
冯飞飞. 热声载荷下复合材料薄壁结构随机疲劳寿命估算[D]. 沈阳: 沈阳航空航天大学, 2014. [百度学术]
FENG Feifei. Estimation of the random fatigue life of composite thin-walled structures under thermo-acoustic Loadings[D]. Shenyang: Shenyang Aerospace University, 2014. (in Chinese) [百度学术]
SHA Y D, ZHENG X Y. Response analysis of thin-walled structure under non-uniform temperature field and acoustic loads[C]∥ Proceedings of the 2015 International Conference on Advances in Mechanical Engineering and Industrial Informatics. Zhengzhou, China: Atlantis Press, 2015: 1-15. [百度学术]
冯飞飞, 沙云东, 张国治, 等. 热声载荷下复合材料薄壁结构的随机疲劳寿命估算[J]. 沈阳航空航天大学学报, 2015, 32(4): 24-29,66. [百度学术]
FENG Feifei, SHA Yundong, ZHANG Guozhi, et al. Random fatigue life estimation of composite thin-walled structures under thermo-acoustic loadings[J]. Journal of Shenyang Aerospace University, 2015, 32(4): 24-29,66.(in Chinese) [百度学术]
张国治, 沙云东, 朱林, 等. 热声载荷作用下薄壁壳结构非线性响应及疲劳寿命估算[J]. 沈阳航空航天大学学报, 2015, 32(3): 18-24,36. [百度学术]
ZHANG Guozhi, SHA Yundong, ZHU Lin, et al. Nonlinear response and fatigue life estimation of thin-shell structures under thermo-acoustic loads[J]. Journal of Shenyang Aerospace University, 2015, 32(3): 18-24,36.(in Chinese) [百度学术]
朱林, 王晓飞. 热声载荷下高温合金薄壁结构非线性动态响应特性[J]. 航天器环境工程, 2015, 32(3): 252-259. [百度学术]
ZHU Lin, WANG Xiaofei. Characteristics of nonlinear dynamic response of high temperature alloy thin-walled structures under thermo-acoustic loadings[J]. Spacecraft Environment Engineering, 2015, 32(3): 252-259.(in Chinese) [百度学术]
SHA Y D, WANG J. Nonlinear vibration response analysis and experimental verification of thin-walled structures to thermal-acoustic excitations[C]∥ Proceedings of the 2016 4th International Conference on Machinery, Materials and Information Technology Applications. Xi’an, China: Atlantis Press, 2016: 901-910. [百度学术]
SHA Y D, ZHU L, JIE X B, et al. Nonlinear random response and fatigue life estimation of curved panels to non-uniform temperature field and acoustic loadings[J]. Journal of Vibration and Control, 2016, 22(3): 896-911. [百度学术]
沙云东, 王建, 赵奉同, 等. 高温环境下薄壁结构声疲劳失效验证技术研究[J]. 装备环境工程, 2016, 13(5): 17-24. [百度学术]
SHA Yundong, WANG Jian, ZHAO Fengtong, et al. Acoustic fatigue failure verification technology of thin-walled structure under high temperature environment[J]. Equipment Environmental Engineering, 2016, 13(5): 17-24.(in Chinese) [百度学术]
SHA Y D, WANG J. Nonlinear response analysis and experimental verification for thin-walled plates to thermal-acoustic loads[J]. Chinese Journal of Aeronautics, 2017, 30(6): 1919-1930. [百度学术]
王建, 沙云东. 薄壁结构在热声载荷下的疲劳寿命分析与试验验证[J]. 燃气涡轮试验与研究, 2017, 30(3): 11-15,5. [百度学术]
WANG Jian, SHA Yundong. Fatigue life analysis and experimental verification of thin-walled structures under thermal-acoustic loads[J]. Gas Turbine Experiment and Research, 2017, 30(3): 11-15,5.(in Chinese) [百度学术]
王建, 沙云东. 热声环境下薄壁加筋结构的振动响应研究与疲劳寿命分析[J]. 科学技术与工程, 2017, 17(8): 71-79. [百度学术]
WANG Jian, SHA Yundong. Vibration response research and fatigue life analysis of reinforced panels in thermal-acoustic environment[J]. Science Technology and Engineering, 2017, 17(8): 71-79.(in Chinese) [百度学术]
沙云东, 王建, 赵奉同, 等. 热声激励下高温合金薄壁结构振动响应试验验证与疲劳寿命预测[J]. 推进技术, 2017, 38(8): 1847-1856. [百度学术]
SHA Yundong, WANG Jian, ZHAO Fengtong, et al. Vibration responses experimental verification and fatigue life prediction of superalloy thin-walled structures under thermal-acoustic excitations[J]. Journal of Propulsion Technology, 2017, 38(8): 1847-1856.(in Chinese) [百度学术]
白文君, 沙云东, 李华山, 等. 热声载荷下C/SiC层合薄板动态响应分析及寿命预测[J]. 振动与冲击, 2017, 36(10): 76-83. [百度学术]
BAI Wenjun, SHA Yundong, LI Huashan, et al. Dynamic response analysis and fatigue life prediction of C/SiC thin laminated plate under thermal-acoustic loadings[J]. Journal of Vibration and Shock, 2017, 36(10): 76-83.(in Chinese) [百度学术]
王建, 沙云东, 赵奉同, 等. 热声载荷下薄壁开孔结构振动响应与寿命预估[J]. 航空发动机, 2017, 43(3): 24-31. [百度学术]
WANG Jian, SHA Yundong, ZHAO Fengtong, et al. Vibration response analysis and fatigue life prediction of thin-walled structures with opening under thermo-acoustic loads[J]. Aeroengine, 2017, 43(3): 24-31.(in Chinese) [百度学术]
沙云东, 王建, 赵奉同, 等. 热声载荷下薄壁结构振动响应试验验证与疲劳分析[J]. 航空动力学报, 2017, 32(11): 2659-2671. [百度学术]
SHA Yundong, WANG Jian, ZHAO Fengtong, et al. Vibration response experimental verification and fatigue analysis of thin-walled structures to thermal-acoustic loads[J]. Journal of Aerospace Power, 2017, 32(11): 2659-2671.(in Chinese) [百度学术]
沙云东, 王建, 骆丽, 等. 热声载荷作用下金属薄壁结构的振动响应与试验验证[J]. 振动与冲击, 2017, 36(20): 218-224,232. [百度学术]
SHA Yundong, WANG Jian, LUO Li, et al. Vibration responses analysis and experimental verification of metallic thin-walled structures to thermal-acoustic loadings[J]. Journal of Vibration and Shock, 2017, 36(20): 218-224,232.(in Chinese) [百度学术]
栾孝驰, 胡翼飞, 沙云东, 等. 高温环境下薄壁结构声激励响应及疲劳分析与试验验证[J]. 航空动力学报, 2018, 33(11): 2561-2572. [百度学术]
LUAN Xiaochi, HU Yifei, SHA Yundong, et al. Acoustic excitation response and fatigue life analysis and test verification of thin-walled structure under high temperature environment[J]. Journal of Aerospace Power, 2018, 33(11): 2561-2572.(in Chinese) [百度学术]
沙云东, 胡翼飞, 胡增辉. 薄壁结构高温随机振动疲劳分析方法有效性验证[J]. 推进技术, 2018, 39(6): 1386-1395. [百度学术]
SHA Yundong, HU Yifei, HU Zenghui. Random vibration fatigue analysis method valid verification of thin-walled structure under high temperature environment[J]. Journal of Propulsion Technology, 2018, 39(6): 1386-1395.(in Chinese) [百度学术]
王建, 沙云东, 杜英杰, 等. 热声复合环境下薄壁锥壳结构响应计算与疲劳寿命预估[J]. 装备环境工程, 2018, 15(12): 91-97. [百度学术]
WANG Jian, SHA Yundong, DU Yingjie, et al. Response calculation and fatigue life prediction of thin-walled conical shell structures under thermal-acoustic complex environment[J]. Equipment Environmental Engineering, 2018, 15(12): 91-97.(in Chinese) [百度学术]
栾孝驰, 沙云东, 胡翼飞. 稳态高温环境下薄壁结构声疲劳分析与试验验证[J]. 战术导弹技术, 2018(6): 35-43. [百度学术]
LUAN Xiaochi, SHA Yundong, HU Yifei. Thin-walled panel structure acoustic fatigue analysis method experimental verification under steady state high temperature environment[J]. Tactical Missile Technology, 2018(6): 35-43.(in Chinese) [百度学术]
沙云东, 朱付磊, 赵奉同, 等. 热声载荷下薄壁板行波管疲劳分析与试验研究[J]. 推进技术, 2019, 40(8): 1876-1886. [百度学术]
SHA Yundong, ZHU Fulei, ZHAO Fengtong, et al. Fatigue analysis and experimental research for thin-walled plates under thermoacoustic loading in traveling wave tube[J]. Journal of Propulsion Technology, 2019, 40(8): 1876-1886.(in Chinese) [百度学术]
WANG J, ZHAO F T, SHA Y D, et al. Fatigue life research and experimental verification of superalloy thin-walled structures subjected to thermal-acoustic loads[J]. Chinese Journal of Aeronautics, 2020, 33(2): 598-608. [百度学术]
沙云东, 艾思泽, 赵奉同, 等. 高速热流下薄壁结构声振响应分析及寿命预估[J]. 航空学报, 2020, 41(2): 223327. [百度学术]
SHA Yundong, AI Size, ZHAO Fengtong, et al. Vibro-acoustic response analysis and fatigue life prediction of thin-walled structures with high speed heat flux[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 223327.(in Chinese) [百度学术]
张家铭. 航空薄壁结构非线性动力学分析与疲劳寿命预估[D]. 沈阳: 沈阳航空航天大学, 2020. [百度学术]
ZHANG Jiaming. Nonlinear dynamic analysis and fatigue life prediction of aviation thin-walled structures[D]. Shenyang: Shenyang Aerospace University, 2020. (in Chinese) [百度学术]
沙云东, 艾思泽, 张家铭, 等. 热流环境下薄壁结构随机振动响应计算与疲劳分析[J]. 航空动力学报, 2020, 35(7): 1402-1412. [百度学术]
SHA Yundong, AI Size, ZHANG Jiaming, et al. Random vibration response calculation and fatigue analysis of thin-walled structures under heat flux environment[J]. Journal of Aerospace Power, 2020, 35(7): 1402-1412.(in Chinese) [百度学术]
栾孝驰, 胡翼飞, 沙云东, 等. 薄壁结构在热—声—流动载荷作用下疲劳寿命预估[J]. 机械设计与制造, 2020(2): 279-283,287. [百度学术]
LUAN Xiaochi, HU Yifei, SHA Yundong, et al. Fatigue life prediction of thin-walled structures under thermal-acoustic-fluid loads[J]. Machinery Design & Manufacture, 2020(2): 279-283,287.(in Chinese) [百度学术]
张家铭, 沙云东, 艾思泽. 高温声载荷下火焰筒结构动力学响应特性分析[J]. 机械制造与自动化, 2020, 49(6): 101-105. [百度学术]
ZHANG Jiaming, SHA Yundong, AI Size. Analysis of dynamic response characteristics of flame tube structures under acoustic loading and high temperature[J]. Machine Building & Automation, 2020, 49(6): 101-105.(in Chinese) [百度学术]
沙云东, 杨延泽, 唐晓宁. 高温升环境下热端部件薄壁连接结构声疲劳强度分析与试验验证[J]. 推进技术, 2022, 43(11): 342-354. [百度学术]
SHA Yundong, YANG Yanze, TANG Xiaoning. Acoustic fatigue strength analysis and experimental verification of thin-walled connection structures with hot sections under high temperature rise environment[J]. Journal of Propulsion Technology, 2022, 43(11): 342-354.(in Chinese) [百度学术]
王晨. 热效应对高频声振响应与疲劳寿命影响研究[D]. 合肥: 中国科学技术大学, 2017. [百度学术]
WANG Chen. Study on the influence of thermal effect on high frequency acoustic vibration response and fatigue life[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese) [百度学术]
王晨, 陈海波, 王用岩, 等. 温度效应对铝合金壁板高频声振疲劳寿命的影响研究[J]. 应用力学学报, 2018, 35(4): 701-708,926. [百度学术]
WANG Chen, CHEN Haibo, WANG Yongyan, et al. Thermal effect on the fatigue life of aluminum panel under high-frequency acoustic excitation[J]. Chinese Journal of Applied Mechanics, 2018, 35(4): 701-708,926.(in Chinese) [百度学术]
王晨, 燕群, 陈海波, 等. 温度效应对壁板动响应及疲劳寿命影响研究[J]. 计算机仿真, 2019, 36(6): 68-72. [百度学术]
WANG Chen, YAN Qun, CHEN Haibo, et al. Influence of temperature effect on dynamic response and fatigue life of panel[J]. Computer Simulation, 2019, 36(6): 68-72.(in Chinese) [百度学术]
贺尔铭, 刘峰, 胡亚琪, 等. 热声载荷下薄壁结构非线性振动响应分析及疲劳寿命预测[J]. 振动与冲击, 2013, 32(24): 135-139,168. [百度学术]
HE Erming, LIU Feng, HU Yaqi, et al. Nonlinear vibration response analysis and fatigue life prediction of a thin-walled structure under thermal-acoustic loading[J]. Journal of Vibration and Shock, 2013, 32(24): 135-139,168.(in Chinese) [百度学术]
贺尔铭, 胡亚琪, 张钊, 等. FGM板三维层合模型及热—噪声载荷下的动态响应研究[J]. 航空学报, 2013, 34(6): 1293-1300. [百度学术]
HE Erming, HU Yaqi, ZHANG Zhao, et al. 3-D laminated model and dynamic response analysis of FGM panels in thermal-acoustic environments[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1293-1300.(in Chinese) [百度学术]
贺尔铭, 陈兵, 张忠, 等. 考虑后屈曲的2D C/SiC复合材料板热振动分析[J]. 强度与环境, 2016, 43(4): 49-56. [百度学术]
HE Erming, CHEN Bing, ZHANG Zhong, et al. Modal analysis of 2D C/SiC composite panels in thermal environment considering post buckling[J]. Structure & Environment Engineering, 2016, 43(4): 49-56.(in Chinese) [百度学术]
贺尔铭, 陈兵, 曹存显. 高温环境下二维正交编织C/SiC复合材料壁板振动模态演化[J]. 航空学报, 2017, 38(7): 220553. [百度学术]
HE Erming, CHEN Bing, CAO Cunxian. Vibration mode evolution of 2D woven C/SiC composite panels in hot environment[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 220553.(in Chinese) [百度学术]
黄俊涛. 弹性支承复合材料壁板热振研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [百度学术]
HUANG Juntao. Study on thermal vibration of composite wallboard with elastic support[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese) [百度学术]
彭佳琦. 热声载荷下螺栓连接复合材料壁板非线性振动响应分析[D]. 哈尔滨: 哈尔滨工业大学, 2018. [百度学术]
PENG Jiaqi. Nonlinear vibration response analysis of bolted composite wallboard under thermoacoustic load[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese) [百度学术]
WANG Y L, CAO D Q, PENG J Q, et al. Nonlinear random responses and fatigue prediction of elastically restrained laminated composite panels in thermo-acoustic environments[J]. Composite Structures, 2019, 229: 111391. [百度学术]
石乃文. 高速飞行器热防护结构振动疲劳分析[D]. 哈尔滨: 哈尔滨工业大学, 2019. [百度学术]
SHI Naiwen. Vibration fatigue analysis of thermal protection structure of high-speed aircraft[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese) [百度学术]
崔晓航. 涡轮叶片热强度及疲劳寿命分析[D]. 哈尔滨: 哈尔滨工程大学, 2017. [百度学术]
CUI Xiaohang. Thermal strength and fatigue life analysis of turbine blades[D]. Harbin: Harbin Engineering University, 2017. (in Chinese) [百度学术]
林叶丰. 热噪声载荷作用下薄壁结构振动特性分析[D]. 哈尔滨: 哈尔滨工程大学, 2019. [百度学术]
LIN Yefeng. Analysis of vibration characteristics of thin-walled structures under thermal noise load[D]. Harbin: Harbin Engineering University, 2019. (in Chinese) [百度学术]
吕冰洋. 热环境下热防护结构动响应行为研究[D]. 北京: 北京理工大学, 2015. [百度学术]
LYU Bingyang. Study on dynamic response behavior of thermal protection structure in thermal environment[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese) [百度学术]
任健. 热环境下薄板随机动响应统计行为研究及疲劳寿命预测[D]. 北京: 北京理工大学, 2017. [百度学术]
REN Jian. Study on statistical behavior of random dynamic response of thin plates in thermal environment and fatigue life prediction[D]. Beijing: Beijing Institute of Technology, 2017. (in Chinese) [百度学术]
ZHAO X J, CHEN H B, LEI J M, et al. A scaling procedure for measuring thermal structural vibration generated by wall pressure fluctuation[J]. Chinese Journal of Aeronautics, 2019, 32(4): 815-825. [百度学术]
周亚东, 吴邵庆, 李彦斌, 等. 变温条件下热结构的声疲劳寿命评估[J]. 工程力学, 2015, 32(10): 220-225. [百度学术]
ZHOU Yadong, WU Shaoqing, LI Yanbin, et al. Acoustic fatigue life assessment of hot structures under variable temperature conditions[J]. Engineering Mechanics, 2015, 32(10): 220-225.(in Chinese) [百度学术]
周亚东. 热声振环境下复合材料薄壁结构疲劳评估问题研究[D]. 南京: 东南大学, 2018. [百度学术]
ZHOU Yadong. Study on fatigue evaluation of composite thin-walled structures under thermoacoustic vibration environment[D]. Nanjing: Southeast University, 2018. (in Chinese) [百度学术]
王佳莹. 考虑温度影响下结构振动疲劳寿命估算[D]. 南昌: 南昌航空大学, 2012. [百度学术]
WANG Jiaying. Estimation of structural vibration fatigue life considering temperature influence[D]. Nanchang: Nanchang Hangkong University, 2012. (in Chinese) [百度学术]
刘文光, 严铖, 郭隆清, 等. 热环境下飞行器壁板的振动疲劳分析[J]. 失效分析与预防, 2014, 9(1): 1-5. [百度学术]
LIU Wenguang, YAN Cheng, GUO Longqing, et al. Analysis on vibration fatigue of aircraft panel under thermal environment[J]. Failure Analysis and Prevention, 2014, 9(1): 1-5.(in Chinese) [百度学术]