摘要
滚动轴承作为航空发动机的关键部件,必须依靠高效润滑冷却技术保障其在高速、高温和重载的严苛工作环境下稳定运转。与传统喷射润滑相比,环下润滑技术具有诸多优势,已成为现代发动机主轴轴承的主流润滑方式。本文围绕航空发动机主轴轴承的高效润滑冷却技术,对比了典型润滑方式,系统梳理并总结了环下润滑技术的发展现状,讨论了环下润滑轴承的润滑冷却效果,对航空发动机主轴高速轴承润滑冷却技术的未来发展趋势进行了展望,为航空轴承高效润滑冷却和精细化热管理提供参考。
航空发动机主轴轴承是支承并引导发动机转子精确转动,提供良好定位精度和足够支承刚性的重要部
主轴轴承的良好热管理是其稳定可靠工作的前提,而热管理必须通过适当的润滑和冷却来实现,合理的润滑方式及相应的结构设计则是润滑冷却效果最佳化的重要基础。因此,需要突破高效润滑冷却技术,以提高轴承润滑效率、降低工作温度并减小蠕变损伤的影响,进而实现轴承的长寿命和高可靠运行。
早期发动机常采用喷射润滑对主轴轴承进行润滑与冷却,随着发动机转速和热负荷的不断提高,喷射润滑已不能满足主轴高速轴承的润滑冷却需求,而环下润滑成为解决轴承高温问题最有效的技术手段。
本文对航空发动机主轴轴承润滑技术进行综述,从结构演变与内部流动两个方面梳理环下润滑技术的发展脉络,讨论环下轴承润滑冷却特性的研究现状,并对航空轴承环下润滑技术的未来研发方向进行展望。
受工作环境与空间所限,航空发动机主轴轴承常采用喷射润滑或/和环下润滑对轴承元件进行有效润滑和冷
喷射润滑利用供油泵将滑油增压,通过管路或特制的油孔将滑油输送至供油喷嘴处,经喷孔加速并喷射至轴承内环(或外环)与保持架内(或外)表面间的径向间隙,对轴承实施润

图1 喷射润滑示意
Fig.1 Schematic of jet lubrication
与喷射润滑相比,环下润滑中喷嘴不直接对准轴承供油,滑油首先被收油结构捕获,然后沿输油通道流动至轴承内圈处,最后在高速旋转离心作用下沿供油孔甩入轴承内部,包括“喷油、收油、输油和润滑冷却”四个阶段,环下润滑可以使滑油直接进入有效润滑区,在高速高温环境下具有良好的润滑冷却效果。典型环下润滑结构示意图如

(a) 径向环下润滑结构

(b) 轴向环下润滑结构

(c) 轴端轴承轴向(轴心)环下润滑结构

(d) 中介轴承环下润滑结构
图2 环下润滑示意
Fig.2 Schematic of under-race lubrication
喷射润滑结构简单、易于控制,在DN值较低时有着良好润滑效果。但DN值较高时,滑油难以穿透高速旋转气流进入轴
润滑方式 | 优势 | 不足 | 适用范围 |
---|---|---|---|
喷射润滑 | 结构简单,可根据发动机需求布置喷嘴位置及数量 | 高DN值下滑油难以进入轴承,润滑效果下降 |
低、中DN值轴承 (通常小于1×1 |
环下润滑 |
轴承内部油气分布匀,润滑冷却效果好,具有一定抗断油 | 结构复杂,滑油存在一定飞溅损失 |
高DN值轴承 (通常大于3×1 |
环下润滑的早期研究始于20世纪六七十年代,1966年Bernard
径向收油环通常由多个收油叶片构成,工作时,叶片高速旋转并对滑油射流进行切割收集,输油通道再将滑油输送至轴承。Kovalesk
除了改变收油环叶片数量,径向收油环的设计也聚焦于叶片叶型优化,以降低叶片切割滑油时产生的破碎飞溅,提高收油能力。目前,国外研究者所提出的径向收油环叶片主要存在倾斜叶

图3 叶片带挡油凸台的径向收油
Fig.3 Radial oil scoop with blade-dammin
在国内研究中,2021年覃经文

图4 多层收油叶片
Fig.4 Multi-layer oil scoop blade assembl
20世纪90年代,Atkinson
Ciokajlo
国内相关的研究中,2017年,闫众
由于空间和结构的限制,收油过程中滑油不可避免地会由于反弹飞溅而造成损失,导致收油环无法将供油喷嘴喷出的滑油全部收集,因此通过收油效率量化表征环下润滑收油结构的收油能力,即一定时间间隔内进入轴承的滑油量与滑油喷嘴的供油量之
国外,英国诺丁汉大学G2TRC(Gas Turbine and Transmissions Research Center)研究团队搭建了径向收油环收油试验平台,针对转速、滑油流量、收油环轴向宽度和外径等因素对收油效率的影响规律开展研
Prabhakar
在国内,西北工业大学的姜乐

(a) 数值计算

(b) 实验现象
图5 收油环附近的液滴飞
Fig.5 Droplet splashing near the oil scoo
姜乐
通常情况下,轴向环下润滑结构收油效率较高,通常可达90%以
姜乐

(a) 8 kr/min
(b) 10 kr/min

(c) 12 kr/min
(d) 15 kr/min
图6 不同转速下供油孔内滑油分
Fig.6 Distribution of oil in the radial hole at different rotational spee
在环下润滑收油性能方面,国内外研究者借助CFD技术与试验掌握了工况及结构参数对收油效率的影响规律,但多参数耦合关系造成单参数研究不能完整反映参数间的相关关系,因此,需要综合评估单参数和不同参数组合对收油性能的影响,力求获得最佳收油性能及其对应的最佳参数组合方案。
滑油被收油环捕获后进入高速轴承内部,对其进行润滑与冷却,在阐述环下润滑技术的基础上,本文对环下润滑轴承的内部流动、生热、传热及温度场分布研究现状进行讨论。
相比于喷射润滑,环下润滑供油方式的改变会对轴承动力学状态、冷却换热状态、流体作用力以及轴承产热造成显著影响,从而影响整个轴承的热力学状态。因此,探究环下润滑轴承内部的两相流动状态是进行轴承润滑冷却特性分析的基础。
Adeniyi

(a) t=14.76 ms
(b) t=18.97 ms
(c) t=25.30 ms

(d) t=40.05 ms
(e) t=63.24 ms
(f) t=105.40 ms
图7 不同时刻轴承内滑油分
Fig.7 Oil distribution inside the bearing at different tim
鲁勇
环下润滑轴承运转时,内部的流体黏性摩擦造成的拖曳损失和搅拌损失是轴承总功率损失的重要来源,准确计算流体黏性摩擦损失在轴承总功率损失的建模中起着重要作用。Palmgre
围绕轴承黏性摩擦损失中的拖曳阻力及涡动力矩,国内外研究者也开展了相关研究。Harris
目前滚动轴承产热分析方法主要包含整体法与局部法两种。整体法主要通过轴承的总体功率损失经验关系式进行轴承产热的快速预估,计算简单高效。局部法是基于轴承内部力学及运动关系建立的分布式产热分析模型,可以更真实精确地反映轴承的产热机理,是目前滚动轴承热分析的主要研究方法。
在轴承内部生热和传热特性研究的基础上,评估轴承温度场可有效对其工作寿命进行预测,进而保障轴承的安全可靠运转。Flouro
在国内,高文君
综上,目前研究已基本厘清了工况参数及轴承部件运动对轴承产热、传热、温升等特性的影响,但仍存在如热网络法节点划分粗糙,在分布式热源精确加载等引起的轴承热力学特性分析误差。此外,在进行边界条件选取时,流动及热边界条件的选取和确定目前仍主要依靠经验简化,与实际物理情况仍有一定差异。
因此,针对环下润滑高速轴承,结合收油性能实现轴承内部油气分布和黏性摩擦损失的准确预测是提升轴承润滑与冷却效果的重要方向,同时环下润滑主轴轴承产热、传热及温度场分布的精细化分析作为有效评估主轴轴承性能的关键,仍需进一步深入研究。
环下润滑技术已成为现代航空发动机主轴轴承主要采用的润滑方式,在环下润滑结构优化设计、收油性能提升以及主轴轴承润滑冷却特性方面取得了一定进展。然而,环下润滑技术本身的复杂性使得实际工程应用层面仍面临着挑战。
环下润滑结构内部油气两相流动复杂,收油效率同时受多个设计参数的影响,结构设计及制造加工难度较大。同时,环下润滑包含多个工作过程,收油环与轴承在结构、流体流动及热量传递方面均存在复杂的耦合关系,仍需要针对以下问题开展系统的深入研究。
以径向收油结构为例进行说明,收油环的收油能力直接影响进入轴承的滑油量,而轴承所需滑油量与实际供油量间的匹配关系则会影响轴承工作性能:供油量不足时轴承内部热量难以及时被带走;滑油过量则会增强滑油与轴承内部运动部件的流体黏性摩擦作用,搅拌生热量增加,导致发动机功率消耗更高。环下润滑与轴承耦合关系如

图8 环下润滑与轴承耦合关系
Fig.8 Coupling relationship of the under-race lubrication and bearing
为保证轴承良好的润滑冷却效果,需要通过轴承生热及传热分析,精确确定环下润滑轴承的滑油供给量,再根据实际结构开展优化设计,而收油环结构的内部收油及流动性能又是开展轴承润滑冷却设计的基础。因此,有必要对环下润滑系统的全过程开展流热固耦合研究,同时对收油性能和轴承的润滑冷却特性进行精细评估。
轴承热管理伴随着油气两相流动,是一个多部件间相互产热与传热共存的多进程、强耦合过程。主轴轴承的润滑冷却不仅是简单的供油散热问题,更与轴承腔和回油管间的流动换热存在深度的关联。
环下润滑—轴承/轴承腔—回油/通风结构之间的相互联系如

图9 环下润滑与轴承腔热分析耦合
Fig. 9 Coupling analysis process of the bearing lubrication
因此,为实现对轴承及轴承腔“热问题”的高效热管理,需要对环下润滑结构—轴承—轴承腔的多过程油气两相流动开展耦合研究,确定合理的系统边界,提高多部件间流动、产热及传热的耦合分析能力。
在先进航空发动机精细化研制的迫切需求牵引之下,必将促进环下润滑高速轴承获得新的突破。针对环下润滑轴承及其关联部件深入开展耦合研究,使轴承在最佳供油量下稳定运行,有利于实现有效热管理的同时降低系统滑油循环量;此外,这也可以提升滑油系统的供回油匹配能力,实现系统的精准调控;同时合理的环下润滑结构设计更利于发动机减重,提高发动机效率。
环下润滑高速轴承多层级相互影响需要通过不断迭代对复杂系统进行优化。未来,应立足于上述系统性的耦合研究,进一步厘清环下润滑结构—轴承/轴承腔—滑油系统的耦合关系,综合、全面考虑相关因素,不断完善航空发动机主轴轴承高性能润滑研究体系,以期实现高速轴承、滑油系统乃至航空发动机的长寿命与高可靠性工作,助力高性能航空发动机迈向更高水平。
参考文献
许春生. 燃气涡轮发动机[M]. 北京: 兵器工业出版社, 2006. [百度学术]
XU Chunsheng. Gas turbine engine[M]. Beijing: Ordnance Industry Press, 2006.( in Chinese) [百度学术]
林基恕. 航空发动机主轴滚动轴承的技术进展[J]. 燃气涡轮试验与研究, 2003, 16(4): 52-56. [百度学术]
LIN Jishu. Technical advance in rolling bearing of aero- engine shaft[J]. Gas Turbine Experiment and Research, 2003, 16(4): 52-56. (in Chinese) [百度学术]
刘朋, 王黎钦, 张传伟, 等. 航空发动机主轴轴承状态监测研究现状与发展趋势[J]. 航空动力学报, 2022, 37(2): 330-343. [百度学术]
LIU Peng, WANG Liqin, ZHANG Chuanwei, et al. Research status and development trend of condition monitoring on main-shaft bearings used in aircraft engines[J]. Journal of Aerospace Power, 2022, 37(2): 330-343.(in Chinese) [百度学术]
李坤, 高文君, 李宛蓉, 等. 锥形轴承腔油气两相流动与换热数值研究[J]. 推进技术, 2022, 43(11): 251-259. [百度学术]
LI Kun, GAO Wenjun, LI Wanrong, et al. Numerical study of oil-air two-phase flow and heat transfer in tapered bearing chamber[J]. Journal of Propulsion Technology, 2022, 43(11): 251-259.(in Chinese) [百度学术]
PINEL S I, SIGNER H R, ZARETSKY E V. Comparison between oil-mist and oil-jet lubrication of high-speed, small-bore, angular-contact ball bearings[J]. Tribology Transactions, 2001, 44(3): 327-338. [百度学术]
ZARETSKY E, SCHULLER F, COE H. Lubrication and performance of high-speed rolling-element bearings[J]. Lubrication Engineering, 1985, 41(12): 725-732. [百度学术]
刘红彬, 张磊, 史永生, 等. 高速滚动轴承环间气流特性数值模拟[J]. 机械设计, 2016, 33(6): 61-66. [百度学术]
LIU Hongbin, ZHANG Lei, SHI Yongsheng, et al. Numerical simulation of airflow characteristics between rings of the high-speed rolling bearing[J]. Journal of Machine Design, 2016, 33(6): 61-66. (in Chinese) [百度学术]
朱卫兵, 张小彬, 鲁勇帅, 等. 润滑方式对球轴承润滑性能影响的数值研究[J]. 推进技术, 2019, 40(4): 892-901. [百度学术]
ZHU Weibing, ZHANG Xiaobin, LU Yongshuai, et al. Numerical study for influence of lubrication methods on lubrication performance of ball bearing[J]. Journal of Propulsion Technology, 2019, 40(4): 892-901. (in Chinese) [百度学术]
PALEO CAGEAO P, SIMMONS K, PRABHAKAR A, et al. Assessment of the oil scoop capture efficiency in high speed rotors[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(1): 012401. [百度学术]
LEE C W, JOHNSON G R, PALMA P C, et al. Factors affecting the behaviour and efficiency of a targeted jet delive-ring oil to a bearing lubrication system[C]∥ ASME Turbo Expo 2004: Power for Land, Sea, and Air. US: ASME, 2008: 191-199. [百度学术]
许冬冬, 张金焕, 郭绍鹏. 环下供油轴承的断油试验[J]. 轴承, 2005(5): 26-27. [百度学术]
XU Dongdong, ZHANG Jinhuan, GUO Shaopeng. Oil cut-off test of oil supply bearing under ring[J]. Bearing, 2005(5): 26-27.(in Chinese) [百度学术]
BERNARD D, ROBERT R N, HENRY W W. Bearing assembly: US3269786[P]. 1966-03-25. [百度学术]
PABST R H, SILAY W J. Shaft sealing and cooling means: US3325232[P]. 1967-06-13. [百度学术]
KOVALESKI S K. Radial scoop construction: US4648485[P]. 1987-03-10. [百度学术]
FISHER K L, DEMEL H F, HAZELEY R. Methods and apparatus for supplying oil to bearing assemblies: US64094-64[P]. 2002-06-25. [百度学术]
FISHER K L, ISHIGA K. Bi-directional oil scoop for bea-ring lubrication: US20030039421[P]. 2003-02-27. [百度学术]
MCDONAGH S T. Liquid-capturing shaft: US201600691-86[P]. 2016-03-10. [百度学术]
SCHWENDENMANN A. Circumferential lubricant scoop: US20170234222[P]. 2017-08-17. [百度学术]
DAVIS T A, SABINO G E. Dual radial scoop oil delivery system: US20200291818[P]. 2020-09-17. [百度学术]
WOTZAK M G. Oil scoop manifold: US20130283758[P]. 2013-10-31. [百度学术]
覃经文, 郭晖, 周琳, 等. 收油环及环下供油润滑装置: CN111878237B[P]. 2021-11-16. [百度学术]
QIN Jingwen, GUO Hui, ZHOU Lin, et al. Oil collecting ring and under-ring oil supply lubricating device: CN111878 237B[P]. 2021-11-16.(in Chinese) [百度学术]
沈洁阳, 李佳琪, 占锐, 等. 一种航空发动机的轴承组件及航空发动机: CN112648295B[P]. 2022-07-08. [百度学术]
SHEN Jieyang, LI Jiaqi, ZHAN Rui, et al. Bearing assembly of aero-engine and aero-engine: CN112648295B[P]. 2022-07-08.(in Chinese) [百度学术]
刘振侠, 姜乐, 吕亚国, 等. 一种径向收油环、航空发动机轴承的环下润滑装置及方法: CN110748418B[P]. 2021-06-29. [百度学术]
LIU Zhenxia, JIANG Le, LYU Yaguo, et al. Radial oil collecting ring and under-ring lubricating device and method of aero-engine bearing: CN110748418B[P]. 2021-06-29.(in Chinese) [百度学术]
姜乐, 吕亚国, 胡剑平, 等. 一种径向收油环和航空发动机主轴承环下润滑装置及方法: CN110578605B[P]. 2021-06-29. [百度学术]
JIANG Le, LYU Yaguo, HU Jianping, et al. Radial oil collection ring and aero-engine main bearing ring down lubrica-ting device and method: CN110578605B[P]. 2021-06-29.(in Chinese) [百度学术]
胡剑平, 刘振侠, 吕亚国, 等. 一种径向收油环、环下供油润滑装置及方法: CN110714987B[P]. 2021-05-11. [百度学术]
HU Jianping, LIU Zhenxia, LYU Yaguo, et al. Radial oil collecting ring and under-ring oil supply lubricating device and method: CN110714987B[P]. 2021-05-11.(in Chinese) [百度学术]
ATKINSON E, SALAMA E E. Multi-plane lubricated bearing assembly: US5106209[P]. 1992-04-21. [百度学术]
DAIBER P C, GREENWOOD A P, BAILEY T E. Lubricated bearing assembly: US5183342[P]. 1993-02-02. [百度学术]
CIOKAJLO J J, HAUSER A A, DAVISON S H. Gas turbine engine lubrication system: US5272868[P]. 1993-12-28. [百度学术]
JEWESS G F, SHATZ M N, JONES A C, et al. Under race bearing lubrication system for gas turbine engines: US20080135336[P]. 2008-06-12. [百度学术]
LUCAS J L. Concentric axial oil scoop: US10047649[P]. 2018-08-14. [百度学术]
MUNSON J. Lubricant scoop: US8464835[P]. 2013-06-18. [百度学术]
DEMITRASZEK A, MESSERSCHMIDT D E. Axial oil scoop for a gas turbine engine: US20140241851[P]. 2014-08-28. [百度学术]
闫众, 孔令骏, 安浩俊, 等. 一种高速航空轴承试验器双层环下润滑结构: CN205895926U[P]. 2017-01-18. [百度学术]
YAN Zhong, KONG Lingjun, AN Haojun, et al. Double-deck ring of high-speed aircraft bearing tester is lubricating structure down: CN205895926U[P]. 2017-01-18.(in Chinese) [百度学术]
朱加赞, 王宪良, 黄宏亮, 等. 一种高速轴承环下供油结构: CN206439380U[P]. 2017-08-25. [百度学术]
ZHU Jiazan, WANG Xianliang, HUANG Hongliang, et al. Speed bearing ring is oil supplying structure down: CN206439380U[P]. 2017-08-25.(in Chinese) [百度学术]
吕亚国, 姜乐, 刘振侠, 等. 一种轴向收油环和航空发动机主轴承环下润滑装置及方法: CN110748419B[P]. 2021-06-29. [百度学术]
LYU Yaguo, JIANG Le, LIU Zhenxia, et al. Radial oil collection ring and aero-engine main bearing ring down lubrica-ting device and method: CN110748419B[P]. 2021-06-29.(in Chinese) [百度学术]
徐从儒. 航空发动机主轴轴承润滑冷却的设计与试验研究[J]. 航空发动机, 1999, 25(3): 8-14. [百度学术]
XU Congru. Design and experimental study on lubrication and cooling of aero-engine spindle bearing[J]. Aeroengine, 1999, 25(3): 8-14.(in Chinese) [百度学术]
PRASAD S K, SANGLI P, BUYUKISIK O, et al. Prediction of gas turbine oil scoop capture efficiency[C]∥ ASME 2014 Gas Turbine India Conference. US: ASME, 2015: 1-10. [百度学术]
KORSUKOVA E, KRUISBRINK A, MORVAN H, et al. Oil scoop simulation and analysis using CFD and SPH[C]∥ ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. US: ASME, 2016: 1-9 . [百度学术]
KORSUKOVA E, MORVAN H. Computational fluid dynamics study of oil behavior in a scoop, and factors affecting scoop capture efficiency[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(5): 051008. [百度学术]
PRABHAKAR A, ABAKR Y A, SIMMONS K. Numerical investigations to assess the impact of shaft speed on the performance of scoop devices[C]∥ ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. US: ASME, 2018: 1-8. [百度学术]
KRUISBRINK A, PALEO CAGEAO P, MORVAN H P, et al. Operating under jet splashing conditions can increase the capture efficiency of scoops[J]. International Journal of Heat and Fluid Flow, 2019, 76: 296-308. [百度学术]
姜乐, 刘振侠, 吕亚国. 环下润滑内部空气场流动特性数值计算研究[C]∥ 中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议. 昆明: 中国航天第三专业信息网, 2019: 42-51. [百度学术]
JIANG Le, LIU Zhenxia, LYU Yaguo. Numerical study and analysis the effect of oil scoop blade tip shapeon oil capture efficiency for an under-race lubrication system[C]∥ Gold Coast: Asia Pacific International Symposium on Aerospace Technology. Kunming: Aerospace Propulsion Technology Society, 2019: 42-51.(in Chinese) [百度学术]
LYU Y, LE J, LIU Z, et al. Simulation and analysis of oil scoop capture efficiency[C]∥ Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. US: ASME, 2018: 1-6. [百度学术]
姜乐, 刘振侠, 吕亚国. 环下润滑结构对径向收油环收油效率影响的数值计算研究[J]. 推进技术, 2020, 41(6): 1387-1395. [百度学术]
JIANG Le, LIU Zhenxia, LYU Yaguo. Numerical investigation for effects of under-race lubrication structure on oil capture efficiency of radial oil scoop[J]. Journal of Propulsion Technology, 2020, 41(6): 1387-1395.(in Chinese) [百度学术]
JIANG Le, LIU Zhenxia, LYU Yaguo, et al. Numerical simulation on the oil capture performance of the oil scoop in the under-race lubrication system[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(15): 2258-2273. [百度学术]
吕亚国, 姜乐, 高晓果, 等. 高速轴承环下润滑收油叶片结构参数与工况参数间的匹配关系[J]. 航空学报, 2022, 43(12): 559-573. [百度学术]
LYU Yaguo, JIANG Le, GAO Xiaoguo, et al. Matching relationship between structural parameters and operating parameters of oil scoop blade for high-speed bearing with under-race lubrication[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 559-573.(in Chinese) [百度学术]
姜乐, 刘振侠, 吕亚国, 等. 环下润滑结构内部流动分析和收油叶片结构优化研究[J]. 推进技术, 2022, 43(1): 135-143. [百度学术]
JIANG Le, LIU Zhenxia, LYU Yaguo, et al. Internal flow field analysis and optimization structure of oil scoop blade in under-race lubrication structure[J]. Journal of Propulsion Technology, 2022, 43(1): 135-143.(in Chinese) [百度学术]
JIANG Le, LIU Zhenxia, HUANG Weina, et al. Sensitivity analysis and optimization on oil capture performance of under-race lubrication system for high-speed bearings[J]. Tribology International, 2024, 195: 109598. [百度学术]
曹逸韬, 吕亚国, 朱泽韬, 等. 双支点对转轴承腔两相流动及换热特性的数值研究[J]. 推进技术,2024, 45(7): 176-186. [百度学术]
CAO Yitao, LYU Yaguo, ZHU Zetao, et al. Numerical study of two-phase flow and heat transfer characteristics of double fulcrum counter-rotating bearing chamber[J]. Journal of Propulsion Technology,2024, 45(7): 176-186.(in Chinese) [百度学术]
覃经文, 曾广乐, 郭晖, 等. 某涡轴发动机轴承环下润滑结构试验研究[J]. 润滑与密封, 2019, 44(7): 138-142. [百度学术]
QIN Jingwen, ZENG Guangle, GUO Hui, et al. Experimental research on under-race lubrication of bearing for a turboshaft aeroengine[J]. Lubrication Engineering, 2019, 44(7): 138-142.(in Chinese) [百度学术]
KRUG M B, PEDUTO D, KURZ W, et al. Experimental investigation into the efficiency of an aero-engine oil jet supply system[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(1): 011505. [百度学术]
JIANG L, LYU Y G, LIU Z X. Investigation on two-phase flow characteristics and oil capture performance of axial oil scoop in aero-engine[J]. Case Studies in Thermal Engineering, 2023, 49: 103259. [百度学术]
朱泽韬, 吕亚国, 朱鹏飞, 等. 轴心射流收油环内部油气流动特性的数值模拟研究[J]. 推进技术, 2024, 45(2): 68-77. [百度学术]
ZHU Zetao, LYU Yaguo, ZHU Pengfei, et al. Numerical simulation study of oil-air flow characteristics in axis jet oil receiving scoop[J]. Journal of Propulsion Technology, 2024, 45(2): 68-77.(in Chinese) [百度学术]
朱泽韬, 吕亚国, 朱鹏飞, 等. 环下润滑供油通道流量分配特性的数值研究[J/OL]. 航空动力学报: 1-11[2024-06-11]. https:∥ doi.org/10.13224/j.cnki.jasp.20230255. [百度学术]
ZHU Zetao, LYU Yaguo, ZHU Pengfei, et al. Numerical study of the flow distribution characteristics of under-race lubrication oil passage[J/OL]. Journal of Aerospace Power: 1-11[2024-06-11]. https:∥doi.org/10.13224/j.cnki.jasp.20230255.(in Chinese) [百度学术]
强轲. 航空发动机轴间轴承内油—气两相流动与传热特性研究[D]. 沈阳: 沈阳航空航天大学, 2020. [百度学术]
QIANG Ke. Study on oil-gas two-phase flow and heat tran-sfer characteristics of aeroengine bearings[D]. Shenyang: Shenyang Aerospace University, 2020.(in Chinese) [百度学术]
强轲, 徐让书, 戴海宁, 等. 某型航空发动机轴间轴承集油结构内的两相流动数值计算[J]. 润滑与密封, 2020, 45(11): 118-124,129. [百度学术]
QIANG Ke, XU Rangshu, DAI Haining, et al. Numerical calculation of two-phase flow in the oil-collecting structure of an aero-engine intershaft bearing[J]. Lubrication Engineering, 2020, 45(11): 118-124,129.(in Chinese) [百度学术]
ADENIYI A A, MORVAN H, SIMMONS K. Oil-air flow between the cage and inner race of an aeroengine bearing[C]∥ ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. US: ASME, 2016: 1-7. [百度学术]
JIANG L, LYU Y G, GAO W J, et al. Numerical investigation of the oil-air distribution inside ball bearings with under-race lubrication[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribo-logy, 2022, 236(3): 499-513. [百度学术]
鲁勇帅. 高速球轴承喷油润滑与环下润滑的数值模拟[D]. 哈尔滨: 哈尔滨工程大学, 2018. [百度学术]
LU Yongshuai. Numerical simulation of oil-jet lubrication and under-race lubrication for high speed ball bearings[D]. Harbin: Harbin Engineering University, 2018.(in Chinese) [百度学术]
王赵蕊佳, 张小彬, 鲁勇帅, 等. 滚珠自转对高速球轴承环下润滑内部流动的影响[J]. 推进技术, 2022, 43(9): 319-327. [百度学术]
WANG Zhaoruijia, ZHANG Xiaobin, LU Yongshuai, et al. Effects of ball rotation on internal flow of under-race lubrication of high speed ball bearing[J]. Journal of Propulsion Technology, 2022, 43(9): 319-327.(in Chinese) [百度学术]
王赵蕊佳. 高速球轴承环下润滑两相流及耦合传热分析[D]. 哈尔滨: 哈尔滨工程大学, 2020. [百度学术]
WANG Zhaoruijia. Analysis of two-phase flow and coupled heat transfer of high speed ball bearing under race lubrication[D]. Harbin: Harbin Engineering University, 2020.(in Chinese) [百度学术]
公平, 陈雪骑, 于庆杰, 等. 航空发动机中介轴承流场与润滑影响因素分析[J]. 轴承, 2021(8): 16-21. [百度学术]
GONG Ping, CHEN Xueqi, YU Qingjie, et al. Analysis on flow field and influencing factors of lubrication for aero-engine intermediate bearing[J]. Bearing, 2021(8): 16-21. (in Chinese) [百度学术]
PALMGREN M. Ball and roller design engineering[M]. 3rd ed. Burbank: SAE, 1959: 34-41. [百度学术]
ASTRIDGE D G, SMITH C F. Heat generation in high-speed cylindrical roller bearings[C]∥ 1972 Elasto-hydrodynamic Lubrication 1972 Symposium. Leeds: IEEE, 1973: 83-94. [百度学术]
SKF Group. Rolling bearings 6000 EN[R]. Sweden: SKF Group, 2013. [百度学术]
HARRIS T A, MINDEL M H. Rolling element bearing dynamics[J]. Wear, 1973, 23(3): 311-337. [百度学术]
HARRIS T A. Rolling bearing analysis[M]. 4th ed. New York: Wiley, 2001. [百度学术]
GAO W J, NELIAS D, LIU Z X, et al. Numerical investigation of flow around one finite circular cylinder with two free ends[J]. Ocean Engineering, 2018, 156: 373-380. [百度学术]
GAO W J, NELIAS D, LYU Y G, et al. Numerical investigations on drag coefficient of circular cylinder with two free ends in roller bearings[J]. Tribology International, 2018, 123: 43-49. [百度学术]
GAO W J, NELIAS D, BOISSON N, et al. Model formulation of churning losses in cylindrical roller bearings based on numerical simulation[J]. Tribology International, 2018, 121: 420-434. [百度学术]
FLOUROS M. Reduction of power losses in bearing chambers using porous screens surrounding a ball bearing[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(1): 178-182. [百度学术]
GLOECKNER P. The influence of the raceway curvature ratio on power loss and temperature of a high-speed jet engine ball bearing[J]. Tribology Transactions, 2013, 56(1): 27-32. [百度学术]
WINER W O, BAIR S, GECIM B. Thermal resistance of a tapered roller bearing[J]. ASLE Transactions, 1986, 29(4): 539-547. [百度学术]
POULY F, CHANGENET C, VILLE F, et al. Power loss predictions in high-speed rolling element bearings using thermal networks[J]. Tribology Transactions, 2010, 53(6): 957-967. [百度学术]
高文君, 刘振侠, 朱鹏飞, 等. 基于多节点热网络法的航空发动机主轴轴承温度场分析[J]. 推进技术, 2019, 40(2): 382-388. [百度学术]
GAO Wenjun, LIU Zhenxia, ZHU Pengfei, et al. Steady thermal analysis of main-shaft roller bearing for aero-engine based on multi-nodes thermal network methods[J]. Journal of Propulsion Technology, 2019, 40(2): 382-388.(in Chinese) [百度学术]
LI J N, XUE J F, MA Z T. Study on the thermal distribution characteristics of high-speed and light-load rolling bea-ring considering skidding[J]. Applied Sciences, 2018, 8(9): 1593. [百度学术]
王黎钦, 陈观慈, 古乐, 等. 高速圆柱滚子轴承工作温度研究[J]. 航空动力学报, 2008, 23(1): 179-183. [百度学术]
WANG Liqin, CHEN Guanci, GU Le, et al. Study on operating temperature of high-speed cylindrical roller bearings[J]. Journal of Aerospace Power, 2008, 23(1): 179-183.(in Chinese) [百度学术]
靳岚, 蒋海元, 卢世奇, 等. 考虑热诱导载荷和摩擦生热交互影响的高速角接触球轴承温度场分析[J]. 轴承, 2023(4): 32-37. [百度学术]
JIN Lan, JIANG Haiyuan, LU Shiqi, et al. Analysis on temperature field of high speed angular contact ball bearings considering interaction between thermally induced load and friction heat generation[J]. Bearing, 2023(4): 32-37.(in Chinese) [百度学术]