文章编号:1674-8190(2024)02-001-10

火星无人机实验台发展综述及构想

谭励彦,毛义军

(华中科技大学航空航天学院,武汉 430074)

摘 要:火星地表崎岖、环境复杂,火星无人机由于其具有高机动性和灵活性,为火星探测提供了一种新的工作模式,是未来深空探测的重要范式。本文对比了火星与地球相关地表环境参数的差异,分析了火星无人机需要克服的困难和主要用途,阐明了火星无人机实验台的重要性;详细介绍了国内外研究机构研发火星无人机实验台的技术特点与功能优劣,总结了实验台需要具备的模拟火星环境和测量相关参数。在此基础上,提出了构建火星无人机实验台设想,给出了总体设计思想和思路,并对火星无人机气动力学实验平台的应用前景进行了展望。

关键词:火星无人机实验台;火星环境模拟;传感器;悬停效率;气动力学
 中图分类号:V476.4;V416.8
 文献标识码:A
 DOI: 10.16615/j. cnki. 1674-8190.2024.02.01

Overview and idea of the Mars UAV experimental platform development

TAN Liyan, MAO Yijun

(School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract: The Mars surface is rugged and its environment is complex, the Mars UAVs provide a new idea for Mars exploration due to its high mobility and flexibility, and is an important paradigm for future deep space exploration. The differences between Mars and some relevant surface environmental parameters on Earth are compared, the main uses and difficulties that Mars UAVs need to be overcome are analyzed, and the importance of Mars UAV experimental platform is clarified. The technical features, functional advantages and disadvantages of the Mars UAV experimental platform developed by domestic and foreign research institutions are introduced in detail, and the need for the experimental platform to have a simulated Mars environment and measure relevant parameters is summarized. On this basis, the idea of building a Mars UAV experiment platform is proposed, the overall design ideas and thoughts are given, and the prospect of the application of the Mars aerodynamics experimental platform is made. **Key words**: Mars UAV experimental platform; Mars environment simulation; sensors; hovering efficiency; aero-

dynamics

收稿日期: 2022-11-26; 修回日期: 2023-04-06

基金项目:华中科技大学大学生创新实践项目(202010487055, 202110487011)

通信作者: 毛义军(1981-), 男, 博士, 教授。 E-mail: maoyijun@hust. edu. cn

引用格式:谭励彦,毛义军.火星无人机实验台发展综述及构想[J].航空工程进展,2024,15(2):1-10.

TAN Liyan, MAO Yijun. Overview and idea of the Mars UAV experimental platform development[J]. Advances in Aeronautical Science and Engineering, 2024, 15(2): 1–10. (in Chinese)

0 引 言

火星是地球相邻的行星,具有超过50亿年的 历史,对于人类太空探测和移民有着重要的价值, 是人类太空探测的重要目标^[1]。但是,火星地表崎 岖、环境复杂,使得火星车等探测器在火星表面的 移动和探测存在一定困难。火星无人机具有高机 动性和灵活性,可以有效克服这一困难,并能够极 大程度上提高火星地表的探测效率^[2]。无人机既 可以在较高的高度对火星表面进行系统全面地拍 摄与记录,又可以进入火星车难以到达的目标区 域进行深度探测,相较于火星车二维纵向探测,无 人机使火星探测进入三维时代。不仅如此,火星 无人机还将作为轮式火星车的导航,指导火星车 前行的路径,辅助火星车更好地完成探测任务。 由此可见,火星无人机的出现对于人类更好地完 成火星探测与研究有着非常重要的意义^[3]。

然而,地外无人机的实现存在很多的困难,不同的大气环境带来了截然不同的设计思路与方法。因此,在实验室中搭建一个实验环境用来模拟火星表面对于无人机气动性能有显著影响的物理参数,测试无人机悬停性能指标^[4-5],对于无人机旋翼的设计显得十分关键。

本文对国内外各研究机构的历代火星无人机 实验台进行总结,简述其功能和应用效果,并从火 星环境模拟能力和悬停性能测试能力等方面进行 对比。在此基础上,提出对于未来实验台的构想 与建议,并给出应用前景的展望。

1 火星环境简述

火星物理环境苛刻,与地表环境存在着较大 差异^[6],与无人机气动性能相关的物理参数如表1 所示,可以看出:火星表面重力加速度较低,使得 火星无人机起降需要的升力比地表更小,但火星 表面大气密度仅为地球大气密度的1.37%^[7],由此 造成的较低雷诺数,其导致的黏性效应与流场分 离现象^[8]将对无人机的气动特性和悬停能力带来 很大的负面影响。火星表面极低的平均温度和极 大的昼夜温差对无人机电池的续航能力提出了考 验;低声速产生的高马赫数极易产生空气压缩效 应与激波振荡^[9];火星含氧量极低,这将限制无人 机的动力来源,相比于地表无人机可以采用燃油 方式实现动力供给,火星无人机动力来源将仅限 于自身携带的电池。这些环境因素对火星无人机 探测造成了极大的困难。

F F							
星球	表面重力加速度		大气压强		大气密度		
	数值/(m·s ⁻²)	比值(火星/地球)/%	数值/Pa	比值(火星/地球)/%	数值/[kg·(m·s ⁻¹)]	比值(火星/地球)/%	
火星	3.72	38 03	756	0.75	0.0167	1.37	
地球	9.78	30.03	101 300	0.75	1.22		
星球	温度		声速		氧气含量		
	数值/K	比值(火星/地球)/%	数值/(m·s ⁻	¹) 比值(火星/地球	シ/% 数值/%	比值(火星/地球)/%	
火星	218	79.67	230	67 65	0.13	0.62	
地球	300	12.01	340	07.03	21		

表1 火星表面环境参数^[7] Table 1 Inlet condition for the flat plate test case^[7]

因此在火星无人机的相关研究中,需要通过 对无人机旋翼的翼型、位置和结构进行针对低雷 诺数和高马赫数的相关设计,并进行实验用于测 试气动力学性能。

2 国内外实验台技术简述

近 20 年间,世界各地的研究机构都对模拟火 星环境设计了相应的实验台。在火星无人机探索 的初期,模拟仿真是研究者选择的较为主流的方 法。数值仿真对于火星环境的模拟和物理参数的 调整更为精确和灵活,如在不同的雷诺数和马赫 数条件下使用非稳态可压缩层状 Navier-Stokes模 拟进行评估^[8]。但模拟实验能够以一种更为直观 的视角去反映无人机的动力学性能,弥补数值仿 真方法可能存在的模型不合理性与结果不准确 性,例如在风洞条件下对相关翼型进行气动力学 实验与分析。目前美国、日本和中国等国家相继 开展了火星无人机实验台的研究与设计。

2.1 埃姆斯研究中心塔式实验台

2001年,美国埃姆斯研究中心首先在美国宇 航局真空室对于火星无人机进行研究^[9]。在雷诺 数为37000~54000的和马赫数为0.50~0.65的 范围内,埃姆斯研究中心初步论证了利用旋翼式 无人机垂直起降特性探测火星表面崎岖地形的可 行性,预测了质量在10~50 kg范围内无人机的转 速、飞行效率和工作时间。埃姆斯研究中心搭建 的实验台如图1所示(其中1ft=0.3048m),并强 调了可在实验台上测试旋翼无人机的悬停性能, 这是固定翼无人机所不能比拟的。该实验台设立 在埃姆斯行星风神实验室的真空环境中,将真空 室内气体密度抽到与火星大气一致的水平(如图1 (a)所示)。旋翼倒置安装,使旋翼产生的升力向 下,通过三个一组的称重传感器测得。转子轴功 率通过测量电机输入功率计算得到(如图1(b)所 示)。一年后,埃姆斯研究中心基于四桨叶独立转 子,研制了 TAMS (Terrestrial-Analog Mars Scouts)系列共轴旋翼式无人机^[10]。

图1 埃姆斯研究中心实验台[9]

Fig. 1 Experimental platform of NASA Ames Research Center^[9]

2.2 斯坦福大学杠杆式实验台

2003年,美国斯坦福大学的Kunz^[11]在对超低 雷诺数飞行的空气动力学研究中,设计出了以杠 杆为主体的实验台,如图2所示,一根铝棒与滚珠 轴承连接,轴的一端是电机和转子,另一端是高精 度电子天平。转子产生的升力可以通过杠杆对另 一端的电子天平产生向下的压力,进而通过力臂 平衡计算出升力大小。关于扭矩,采用通过将转 子的转轴和杠杆平行设计,可以将转子的转矩转 化为电子天平受力大小和转子到支点的力臂大小 进行计算。这一方法也存在一些问题,在转子尺 度较小的条件下,轴承的静摩擦力和电子天平的 动力学因素会造成部分误差。因此,采用通过用 升力来平衡配重重力的方法来规避这一影响,平 衡后的轻微扰动可以有效减小轴承的静摩擦误 差;对于电机功率和效率的计算,增加了第二个电 机作为扭矩的负载,通过负载电机产生的负载扭 矩不断增加,可以得到升力、扭矩和转速等相关参 数,进而计算得到测试电机的功率和效率^[11]。

(a)支架部分

(b) 旋翼部分

图 2 斯坦福大学实验台设计^[11] Fig. 2 Experimental platform of Stanford University^[11]

2.3 东京大学钟摆式实验台

2004年,日本东京大学的Tsuzuki等^[12]对火星 无人机的可行性进行了研究,实验台如图3所示。

Fig. 3 Experimental platform of the University of Tokyo^[12]

整个装置设置在一个直径为2.40m,高度为 2.73m的真空室内,钟摆通过支点支撑在框架上。 该实验台测定的参数主要有转子提供的升力,转 速和扭矩。其中,升力通过测斜仪单元(Midori-Precisions,PMP-S10LX)测得。当转子启动后,产 生的升力会使得钟摆倾斜,该倾角由倾角仪测得, 可以精确到0.01°。通过升力和倾角的曲线,可以 计算得到升力大小。根据扭矩关于电流消耗量的 关系,可以通过测量直流电机(Maxon Motor, RE25)消耗的电流量来计算,该扭矩常数为 23.18 mN·m/A。转速测量采用了转速表外接脉 冲计数器来计算,转速表脉冲输出为500 脉冲/周。

在叶尖马赫数小于 0.13, 且雷诺数在 2 000、 4 000 和 8 000 时, Tsuzuki等^[12]认为, 当旋翼性能和 转子性能提高之后, 质量在 100 g左右的火星无人 机是可行的。对于桨叶, 锋利尖锐的前缘, 轻质的 材料和开槽等设计对于提高转子的效率是非常有 效的。为了提高悬停效率, 也可以尽量减小展弦 比(Aspect Ratio)和提高雷诺数, 适当增大挠度 (Camber)也可以提高升力。

2.4 马里兰大学塔式实验台

2015年,美国马里兰大学对于小规模火星无 人机的悬停性能进行了测试^[13],其实验台建设在 一个高度为3 in(约0.91 m)的真空室中,如图4所 示,从上到下依次安装转子、转速传感器、连接杆、 扭矩传感器和拉力传感器。为了精准测试转速, Hacker B40 直流无刷电机与转子连接,转子再通 过一个4:1的行星齿轮减速器与转速传感器相连。 转速传感器通过一个连接杆与扭矩传感器连接, 该扭矩传感器套在中心转轴上,可以直接测量转 子的扭矩。拉力传感器设置在最下端,最多可以 提供1.1 kg的拉力,其精度可以达到±1 g。真空 室通过改变气压来调整雷诺数,以达到模拟火星 大气环境的目的。真空室中还配备了相关的压力 传感器和温度传感器,最终将真空室中的大气密 度控制在0.0167 kg/m³左右。

(a) 俯视图

(b) 仰视图

在叶尖雷诺数小于 5 000 和马赫数在 0.3~ 0.42 的范围内时,该平台具有如下优点:该设计可 以为重达 200 g左右的共轴式火星直升机提供足 够的升力,且续航能力可以达到 13 min左右;当雷 诺数从 3 000 增加到 35 500,悬停气动效率以一个 非线性的趋势增长,最终达到了 0.62,符合一般无 人机的指标。

2.5 哈尔滨工业大学杠杆式实验台

国内对火星无人机实验台的研究也取得了一 定的进展。哈尔滨工业大学的全齐全等[14]在火星 无人机的气动特性测试装置方面取得了大量成 果。在斯坦福大学的杠杆式实验台的基础上,通 过平衡板和轴承对于转子产生的升力进行了精确 的测量[14];同时也在东京大学的钟摆式实验台上 提出改进,通过摆角检测装置对旋翼连杆摆动角 度的测量计算产生升力,如图5所示。对于模拟火 星环境的真空室,采用罐状空心结构,真空泵组和 二氧化碳瓶连接在外壁,并有多组冷凝脂模块分 布于真空室内壁。对于扭矩的测量,将上光栅尺 与下光栅尺同轴相对设置,光栅尺之间采用细连 杆连接,将激光发射器与激光接受器同轴相对设 置^[14]。当转子启动时,其产生的扭矩变化将通过 转接杆传递至上光栅尺,进而引起细连杆的扭转, 该扭转带动下光栅尺扭转。上光栅尺与下光栅尺 扭转产生的角度变换可以将转子扭矩转换为角度 变化,通过放大解决扭矩变化问题。关于转子转 速,上述研究使用光电式转速传感器,哈尔滨工业 大学的王丹^[15]将其进行了改进,即采用了霍尔磁

敏编码器进行测量。该编码器相比光电式编码器,结构更加简单,尺寸更小,使用寿命更长,可靠 性更高,通过脉冲信号经信号处理电路输出正交 方波得到转速。

(a) 实验台

(b)实验台真空室

图 5 哈尔滨工业大学实验台^[14] Fig. 5 Experimental platform of Harbin Institute of Technology^[14]

2.6 "机智号"火星无人机实验台

2021年,来自NASA的火星无人机"机智号" 首次实现了在火星的自主飞行^[16]。该火星无人机 质量仅1.8 kg,采用共轴双旋翼的翼型结构设计, 并且可以实现接近300 m的单次飞行距离,飞行高 度在28.4~42.6 cm,实现了无人控制的全自主飞 行。距莱特兄弟实现在地球上的首次飞行之后, 这是人类飞行的又一里程碑式的壮举。

该火星无人机的地面仿真是在NASA的喷气 推进实验室设计的DARTS Shell(Dshell)仿真环 境中进行的^[17]。Dshell是一个多任务航天器模拟 环境,将动力学模拟器和硬件模型库集成到一个 仿真环境中,该环境可以轻松配置飞行软件和硬 件接口,以实现各种不同的仿真需求。"机智号"的 首席飞行员 Bernard等^[17]在Dshell框架中加入了控 制、视觉追踪和气动力学参数检测的模块,实现了 一台质量为850g左右的原型机的试飞,为"机智 号"提供了理论与实验基础。

在真空室中,Bernard等^[17]通过填充二氧化碳 实现了对火星大气环境的模拟,并通过分析验证 了室温条件下的实验结果与实际火星低温条件下 的气动力学表现接近。直升机以倒置的方式进行 测试,以最大限度地减少再循环效应,并安装在一 个模拟悬停飞行和向前飞行的实验台上,通过一 个定制的2-DOF万向节进行姿态控制测试。在重 力模拟方面,通过一个恒力电机和一个装有迪尼 玛丝的卷轴构成的重力卸载系统减少了原型机的 地球自重^[17]。同样的,升力和扭矩的测量是直接 通过相关传感器实现测量的。Bernard等^[17]创新点 在于通过视觉系统实现了对于无人机飞行姿态的 观察。直升机和实验台被安装了监测加速器和热 电偶的仪器,并使用红外摄像机进行性能监测,Vicon运动跟踪系统用于飞行姿态的记录,相关实验 台如图6所示。

(a) 桨叶平衡展示

(b) 姿态控制测试

图 6 "机智号"火星无人机原型机实验台^[17] Fig. 6 Experimental platform of prototype of Mars UAV "Ingenuity"^[17]

3 实验台对比分析

综上所述,在模拟装置方面,根据火星与地表 主要环境参数的差异,火星实验台应满足对大气 环境、温度和重力三个方面的模拟。各实验台功 能对比如表2所示,可以看出:大部分实验台可以 满足对于火星低大气密度的模拟。对于大气成分 的模拟,大部分研究机构都选择了空气作为气密 室中的气体,而哈尔滨工业大学和美国加州理工 学院喷气推进(Jet)实验室则选择了在火星上起绝 对主导地位的二氧化碳来进行模拟,无疑使得模 拟气体环境更加接近真实火星大气。此外,绝大 多数实验台没有做到对于火星低温的模拟,也没 有实验台做到了火星低重力加速度的模拟。而 Dshell实验平台,完成了对于火星环境的全部模拟,这也促成了人类首次的地外无人飞行。

 Table 2 Comparison of Mars Environment Simulators of Various Research Institutions					3
 研究机构	年份	气密装置	大气成分模拟	温度模拟	重力模拟
 埃姆斯研究中心	2001	美国宇航局真空室	空气	未开展	未开展
斯坦福大学	2003	—	空气	未开展	未开展
东京大学	2004	柱状真空罐	空气	未开展	未开展
马里兰大学	2015	真空室	空气	未开展	未开展
哈尔滨工业大学	2017	柱状真空罐	二氧化碳	冷凝脂电机	未开展
喷气推进实验室	2021	Dshell实验平台	二氧化碳	Dshell实验平台	重力卸载系统

表2 各研究机构火星环境模拟装置对比

各实验台性能参数方面的对比如表3所示。 关于旋翼升力的测量,实验台采用的有三种方法, 分别是直接通过力传感器测量、通过杠杆式实验 台测量和通过钟摆式实验台测量,这三种方法各 有利弊。斯坦福大学和哈尔滨工业大学采用的杠 杆式实验台可将较小的升力放大,并通过杠杆达 到反向的效果,使向上的升力转变为向下的升力, 可通过称重传感器测量。东京大学和哈尔滨工业 大学采用的钟摆式实验台将升力造成的钟摆倾斜 以倾角的方式测量出来,同样采用放大的方式使

升力测量更加准确。埃姆斯研究中心和马里兰大 学则采用直接测量方法,通过力传感器来直接测 量,该方法的优点是仪器体积小,无需占据大量真 空罐空间,一定程度上节约成本,缺点是测量结果 可能相比于其他测量方法不够精确,但如果选择 了精度足够高的力传感器,这将是最优的方法,也 是Jet实验室采用的方法。升力传感器与重力卸载 系统以及万向姿态控制系统的配合,可以模拟无 人机的真实飞行动力学特性。

表3 各研究机构无人机气动性能参数测量对比

Table 3 Compariso	n of measuren	ent of aerodynamic performation	ance parameters of UAVs in variou	s research institutions
研究机构	年份	升力测试方式	转速测试方式	扭矩测试方式
埃姆斯研究中心	2001	称重传感器	预测	—
斯坦福大学	2003	杠杆式实验台	—	负载电机
东京大学	2004	钟摆式实验台	转速表和脉冲计数器	电机耗电量转化
马里兰大学	2015	拉力传感器	转速传感器	扭矩传感器
哈尔滨工业大学	2017	杠杆式和钟摆式实验台	光电式和霍尔测敏式编码器	光栅尺和激光
喷气推进实验室	2021	拉力传感器	转速传感器	扭矩传感器

关于转速的测量经历了从无到有的过程,霍 尔电磁式转速传感器和光电式转速传感器是两种 主流的测量方式。霍尔传感器的原理是霍尔效 应,该传感器需要用一个金属或半导体材质的信 号盘与转子连接,在固定的永磁体下,产生一个微 量的霍尔电压 U_H,通过该矩形脉冲电压信号可计 算得到转子转速。光电式转速传感器以高精度计 量圆光栅和光敏元件为检测元件,通过光电转换 将输入的光信号转换为电信号输出,实现无接触 的精准转速测量。上述两种方式都可以准确测量

转子的转速。

扭矩的测量也分为两大类,第一类是马里兰 大学和喷气推进实验室采用的通过扭矩传感器直 接测量;第二类是采用转换的方法,例如东京大学 通过电流消耗量来转换计算扭矩大小,哈尔滨工 业大学通过光栅尺和激光来进行测量。扭矩传感 器测量会更加直接,但由于需要将传感器套在转 子转轴上,需要占据一定的体积,也可能会影响整 个实验台的稳定程度,因此通过转换的方式测量 也是可行的。 在应用成果对比方面,埃姆斯研究中心在实 验台的基础上研制出了TAMS无人机;斯坦福大 学首次通过杠杆与应力传感器结合的实验台测量 升力;东京大学和马里兰大学证明了低质量火星 无人机的可行性,其中东京大学通过钟摆式实验 台测量了升力;哈尔滨工业大学首次选择二氧化 碳作为真空室内的低密度气体,并加入制冷装置, 在温度和气体成分上更好地模拟火星环境,设计 出了整体上更为完备的实验台;喷气推进实验室 通过Dshell实验平台,实现了无人机"机智号"的首 次火星飞行。各研究机构实验台主要应用成果对 比如表4所示。

表4 各研究机构实验台主要应用成果对比 Table 4 Comparison of the main conclusions of the experimental platform of various research institutions

研究机构	年份	成果
埃姆斯研究中心	2001	研制出TAMS无人机
斯坦福大学	2003	设计出杠杆式应力实验台
东京大学	2004	证明100g火星无人机可行性
马里兰大学	2015	证明200g火星无人机可行性
哈尔滨工业大学	2017	设计出较为完备的火星无人机实验台
喷气推进实验室	2021	实现"机智号"火星无人机的飞行

上述对比研究分析了国内外各研究机构实验 台所采用的方法,通过功能的对比阐释了不同实 验台的优劣。总体来看,未来实验台需要在环境 模拟方面需要做到对于火星重力加速度和温度的 模拟;在参数测量方面,需要做到对于升力、转速、 扭矩和功率等悬停性能相关参数的测定;在结论 方面,需要对火星无人机的悬停气动性能做出评 估和指导建议。

4 未来火星无人机实验台构想与 思路

无人机指导火星探索思路使人类对于火星的 认知从二维时代进入三维时代,能够以一种全新 视角俯瞰火星地表环境。火星大气环境与地球大 气环境显著不同,在这样一个低温、低重力加速 度、低大气密度和低压强的环境下,无人机气动力 学的相关性能显然会受到显著影响。此时,建立 一个能够模拟一定火星大气环境,并可以测量无 人机气动性能相关参数的实验台是无人机实验研 发的重中之重^[18]。

火星无人机实验环境主要由两个主要部分构成,一个是环境参数模拟部分,利用真空室与真空 泵来模拟火星较低的大气密度,通过制冷装置制 造低温来模拟火星地表的低温以及施力装置来平 衡部分重力来模拟火星表面重力加速度;二是气 动指标测量,主要需要测量的物理量有旋翼拉力、 转子转速和扭矩等,通过这三个物理量,可以计算 得到旋翼功率与机械效率,这些参数可以衡量无 人机悬停状态的基本性能,如图7所示。

Fig. 7 The Mars UAVs experimental platform

此外,本文根据火星和地球主要环境参数的 差异,指出了大气密度、温度、重力加速度等环境 参数对无人机气动性能的影响。为此,本文对于 未来火星无人机的实验台设计提出了如下的设计 构想,如图8所示。

1)加入重力平衡装置。火星重力是各实验台 没有考虑的环境因素,因此在未来的火星实验台 应加入这一设定,使环境模拟更加真实。火星重 力加速度为3.72 m/s²,约为地球表面重力加速度 的2/5。在实验室中直接改变重力加速度显然是 不现实的,因此应考虑通过平衡掉无人机的部分 重力,来达到这个目的。质量块配重、机械式拉 簧、气缸、推拉式电磁铁等都是实验室中较为常用 的施加恒力的方式,可以考虑在整个实验台的上 方(旋翼拉力的相反方向)设置一个重力平衡装置 实现对于火星重力加速度的模拟。此外,该装置 还可以模拟无人机、可拉升的火星有效载荷的 大小^[19]。

2)加入温度模拟装置。火星上的平均温度大约为218 K(-55℃),在冬天气温极低,可以达到

140 K(-133 ℃),在夏日白天温度与地球地表温 度接近,约300 K(27 ℃)。这样一个较低的温度会 对无人机气动性能造成影响,例如会使声速降低 相同的线速度下马赫数升高,出现层流分离泡不 稳定,翼型上表面层流分离点后移、下表面层流分 离点较低马赫数前移^[20]等现象。因此,制造一个 合适可控的低温环境对于火星环境的模拟更为真 实。需要注意的是,液氮、干冰等实验室中常用的 制冷方式并不可取,因为会破坏真空室内的设定 气压。采用某些冰盐混合物溶解吸热或制冷机是 比较合理的方式。还有一种低温环境实验的方法 是在高空大气中进行试验^[21],可以使用气球将实 验台提升到该高度,并在该低温低压的条件下进 行实验。该方法的缺点在于实验成本较为高昂, 且实施难度较大。

3)采用光电式转速测量装置。相比于光电式转速传感器,霍尔磁电式转速传感器需要在转子连接一个信号盘,其产生的电磁场会对实验台其他部分(例如重力平衡装置采用的推拉式电磁铁的精度)造成一定的影响,且该传感器体积较大,连接方式较为复杂,会对其他传感器的空间造成影响。因此光电式转速传感器是实验台更好的选择。

4) 扭矩测量装置的选择。对于扭矩的测量, 实验台主要采取的是直接在转轴上套加扭矩传感器和通过电流消耗量来转换两种方法。两种方法 各有优劣,电测法无需在转轴上另加入传感器,使整个实验台体积更小,但数值没有直接测量得到的准确。应根据实际情况灵活选择两种测量方法。

5)实验台结构布局的选择。目前传统火星无 人机气动性能实验台大部分采用了杠杆式或钟摆 式的结构,这是依据升力测量方法决定的。其中, 杠杆式实验台即为哈尔滨工业大学的实验台。该 类型实验台是将旋翼固定在一端,将升力传感器 固定在另一端,通过杠杆将旋翼高速旋转产生的 升力反向,使其升力方向可以适配称重传感器。 该结构存在一些缺陷:若杠杆的长度太长,或材质 较为脆、软,则不能适配较大和较重的旋翼和电 机,更无法在电机和旋翼连接的转轴上加扭矩传 感器,在实验中存在着较大的操作风险和实验误 差。而钟摆式实验台,即东京大学的实验台,该结构采取转化的方法,将升力转化为倾角计的读数。由于最终的扭矩由转化方法测量得到,因此该方法和杠杆式实验台一样,均涉及较大的实验误差。

为了减少这种误差,未来实验台应通过传感 器实现对于升力的直接测量。为了实现这一目 的,需要设计一种全新的结构,可以不用通过杠杆 结构来改变升力方向,也无需通过钟摆结构来间 接测量。为了达到这种效果,应将升力方向布置 为轴向,将升力传感器布置在尾端,通过滑轨等类 似装置抵消轴向的摩擦力,实现对于升力的精准 测量。相关理论构图设计如图9所示。

图 9 火星无人机实验台理论设计构想 Fig. 9 Theretical conception of the Mars UAVs experimental platform

5 应用前景与展望

一个成熟的火星无人机实验台不仅在无人机 悬停性能的测试与实验中发挥作用,而且在其他 实验中的应用前景也非常广泛。真空罐作为火星 环境的模拟装置,通常还可以执行其他火星探测 试验,如美国埃姆斯研究中心的真空罐在研究火 星无人机悬停能力的同时还在研究火星土壤的侵 蚀过程。一个能模拟火星地表的实验装置,对于 开展无人机自主导航,无人机与火星车配合协作 等相关研究都将发挥巨大的作用^[22]。

按照本文构想,一个更加完善的火星无人机 实验台将在未来发挥更大的作用。火星环境模拟 方面,重力平衡装置将不止限于测试无人机旋翼 的悬停性能,而使直接在实验室内测试整台功能 完备的无人机的悬停表现成为可能,更加直观地 感受火星无人机的悬停作业能力,为无人机的进 一步完善提供可能。温度模拟装置使得无人机电 池在低温下的续航能力得到检验,并且能够更加 精准地测试出低温造成的高马赫数对于无人机的 影响。不仅如此,一个完备的实验台可以调整无 人机悬停的相关环境参数,为其他行星,例如木星 无人机的构想提供相应的实验环境,为更多深空 探测无人机的研究提供实验支撑。

同样的,通过火星无人机实验台也可以进行 更多相关气动力学试验。首先,旋翼的翼形对于 火星无人机气动性能有着较大的影响,通过实验 台可以对连续及非连续的翼型进行测试,来寻找 最好的设计和结构。翼型中相对厚度、相对弯度、 弯曲位置和前缘半径等相关参数都是翼型设计的 重要考量目标。其次,翼型不同的安装因素也会 对无人机气动性能产生影响。调整不同的扭转 角、展弦比和半径,测试翼型的最佳迎角状态,都 是评价气动性能的重要实验考量因素^[23]。

6 结束语

在对火星无人机的相关研究中,涌现出了各 类设计、构造不同的无人机实验台。这些实验台 在各自时代取得了许多阶段性的进展,为火星无 人机提供了理论指导意见和仿真实验,是人类对 于火星探索的丰碑。

本文通过对火星无人机实验台过去20年内的 研究进行总结,从拉力、扭矩、转速的测量和火星 物理环境的模拟两方面对各种实验台设计方法进 行了对比,并由此对未来实验台的设计思路与方 向提出了展望。在设计方面,可以加入对于诱导 速度的考量,进一步通过悬停效率来评估无人机 的气动性能。在实验方面,可以通过对于翼型的 形状和安装位置进行评测和垂直拉升等动力学实 验^[21],以达到无人机最佳的悬停能力。

参考文献

- [1] 于登云,孙泽洲,孟林智,等.火星探测发展历程与未来展望[J]. 深空探测学报,2016,3(2):108-113.
 YU Dengyun, SUN Zezhou, MENG Linzhi, et al. The development process and prospects for Mars exploration [J]. Journal of Deep Space Exploration, 2016, 3(2): 108-113. (in Chinese)
- [2] 欧阳自远,肖福根.火星探测的主要科学问题[J]. 航天器 环境工程,2011,28(3):205-217.
 OUYANG Ziyuan, XIAO Fugen. Major scientific issues involved in Mars exploration[J]. Spacecraft Environment Engineering, 2011, 28(3):205-217. (in Chinese)
- [3] 林杨挺. 探索火星环境和生命[J]. 自然杂志, 2016, 38
 (1): 1-7.
 LIN Yangting. Exploration of paleoclimate and possible life on Mars[J]. Nature Magazine, 2016, 38(1): 1-7. (in Chinese)
- [4] ZHAO Pengyue, ZHAO Zhijun, CHEN Shuitian, et al. Design of experimental setups for evaluating hover performance of a Martian coaxial rotorcraft[C]// 2017 IEEE International Conference on Mechatronics and Automation. Takamatsu, Japan: IEEE, 2017: 1427–1432.
- [5] MHATRE P, SHIREEN M. Vertical lift aerial vehicles (VLAV) [J]. Aerial Approach for Martian Exploration, 2021, 11: 211–214.
- [6] 佚名.火星大气[J].大自然探索,2005(6):21.
 Anon. Martian atmosphere [J]. Nature Exploration, 2005
 (6):21.(in Chinese)
- [7] 刘高同,孙宇,张磊.火星大气环境模拟装置设计及仿真 分析研究[J].中国空间科学技术,2016,36(5):65-71.
 LIU Gaotong, SUN Yu, ZHANG Lei. Design and simulation analysis of Mars atmospheric environment simulation device [J]. China Space Science and Technology, 2016, 36 (5):65-71. (in Chinese)
- [8] OTSU H, ABE T. Numerical and experimental aerodynamic investigation of a micro-UAV for flying on Mars [C] // 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Bremen, Germany: AIAA, 2020: 1–8.
- YOUNG L A, AIKEN E W. Vertical lift planetary aerial vehicles: three planetary bodies and four conceptual design cases[C]// 27th European Rotorcraft Forum. Moscow: [s. n.], 2001: 1–18.
- [10] YOUNG L A, AIKEN E W, DERBY M R, et al. Experimental investigation and demonstration of rotary-wing technologies for flight in the atmosphere of mars[C]// 58th Annual Forum of ASH. [S.l.: s.n.], 2002: 268-284.
- [11] KUNZ P J. Aerodynamics and design for ultra-low Reynolds number flight [D]. Stanford: Stanford University, 2003.

- TSUZUKI N, SATO S, ABE T. Conceptual design and feasibility for a miniature mars exploration rotorcraft [C] // 24th International Congress of Aeronautical Sciences. US: Optimage Ltd., 2004: 1–10.
- [13] SHRESTHA R, BENEDICT M, HRISHIKESHAVAN V, et al. Hover performance of a small-scale helicopter rotor for flying on Mars[J]. Journal of Aircraft, 2016, 53(4): 1160-1167.
- [14] 全齐全,赵鹏越,陈水添,等.一种旋翼式火星无人机单旋 翼系统气动特性测试装置及其测试方法:CN 201810230 347.3[P]. 2018-08-24.
 QUAN Qiquan, ZHAO Pengyue, CHEN Shuitian, et al.

A rotor-type Mars UAV single-rotor system aerodynamic characteristics test device and its test method: CN 201810230347.3[P]. 2018-08-24.(in Chinese)

- [15] 王丹.火星无人机旋翼气动特性分析及实验研究[D].哈尔滨:哈尔滨工业大学,2017.
 WANG Dan. Analysis and experimental study on rotor aero-dynamic characteristics of Mars unmanned aerial vehicle
 [D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
- [16] BALARAM J, AUNG M, GOLOMBEK M P. The ingenuity helicopter on the perseverance rover[J]. Space Science Reviews, 2021, 217(3): 1–3.
- [17] BERNARD T, CHINTALAPATI S. A novel Mars rover concept for astronaut operational support on surface EVA missions[C]// 2018 AIAA SPACE and Astronautics Forum and Exposition. US: AIAA, 2018: 1-7.
- [18] 吕俊明, 苗文博, 程晓丽, 等.火星大气模型参数对 MSL
 气动特性的影响[J].空间科学学报, 2014, 34(4): 377-383.

LYU Junming, MIAO Wenbo, CHENG Xiaoli, et al. Im-

pact of Martian atmosphere model parameters on aerodynamic characteristics of Mars science laboratory [J]. Chinese Journal of Space Science, 2014, 34(4): 377-383. (in Chinese)

- [19] FUJITA K, OYAMA A, KUBO D, et al. Wind tunnel test for videogrammetric deformation measurement of UAV for mars airplane balloon experiment-1 (MABE-1) [J]. Journal of Flow Control, Measurement & Visualization, 2019, 7(2): 87-100.
- [20] 李锋,白鹏,刘强.飞行器低 Reynolds 数层流分离理论探讨[J]. 气体物理,2017,2(5):1-10.
 LI Feng, BAI Peng, LIU Qiang. Discussion about the laminar separation theory at low Reynolds numbers[J]. Physics of Gases, 2017,2(5):1-10. (in Chinese)
- [21] MISHRA I, AAYUSH K, VANSHAJ M. Conceptual design of an unmanned aerial vehicle for Mars exploration [J]. European Journal of Engineering and Technology Research, 2021, 6(5): 111-117.
- [22] TZANETOS T. Ingenuity Mars helicopter: from technology demonstration to extraterrestrial scout [C] // 2022 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2022: 1–19.
- [23] 许建华,宋文萍,韩莉,等.高马赫数低雷诺数螺旋桨翼型 气动分析研究[C]// 2013年首届中国航空科学技术大会. 北京:中国航空学会,2013:1-8.
 XU Jianhua, SONG Wenping, HAN Li, et al. Aerodynamic analysis of airfoil at high Mach number and low Reynolds number [C] // 2013 the First China Aviation Science and Technology Conference. Beijing: CSAA, 2013: 1-8. (in Chinese)

(编辑:丛艳娟)