文章编号:1674-8190(XXXX)XX-001-08

微型涡喷发动机转速控制系统设计与验证

袁星宇,徐锦法

(南京航空航天大学航空学院,南京 210016)

摘 要:微型涡喷发动机控制系统在发动机运行过程中起重要作用。从总体架构出发设计某微型涡喷发动机 的系统控制结构,针对传统 PID 控制效果不佳的问题,提出基于线性自抗扰控制(LADRC)技术的转速控制律 设计方法;开展系统硬件实现和软件开发研究,运用 STM32F103VET6嵌入式微处理器研制发动机转速控制 器硬件实物;针对半桥式油泵驱动电路存在桥臂直通隐患,设计可控制 MOSFET 导通的延时电路,采用三层软 件架构完成转速测量、闭环控制等程序设计、开发、调试;构建转速控制系统试验验证平台,测试、验证油泵驱动 电路和延时电路以及转速控制系统。结果表明:驱动电路具有稳定可靠的通断特性,设计构建的控制系统能够 实时监测发动机运行参数并控制发动机转速跟随目标转速,调节速度快、稳态误差小,满足微型涡喷发动机控 制系统应用需求。

关键词:微型涡喷发动机;转速控制系统;线性自抗扰控制器;电子控制器;半桥式驱动电路
 中图分类号: V235
 文献标识码: A

DOI: 10. 16615/j. cnki. 1674-8190. XXXX. XX. 01

Design and validation of a micro turbine engine speed control system

YUAN Xingyu, XU Jinfa

(College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract: The control system of a micro turbine engine plays a crucial role during engine operation. Starting from the overall architecture, the control structure of the speed control system for a specific micro turbine engine is designed. A speed control law design method based on linear active disturbance rejection control (LADRC) technology is proposed. The research is conducted on hardware implementation and software development using the STM32F103VET6 embedded microprocessor to develop the hardware controller for engine speed control. Addressing the potential issue of direct conduction in the half-bridge fuel pump drive circuit, a delay circuit is designed to control the conduction time of MOSFET. A three-layer software architecture is utilized for the design, development, and debugging of programs for speed measurement, closed-loop control, and other functions. The speed control system experimental verification platform is constructed to test and validate the fuel pump drive circuit, delay circuit, and speed control system. The results show that the drive circuit exhibits stable and reliable on-off characteristics. The engine speed can rapidly follow the target speed, with a steady-state error of less than 1%, meeting the application requirements of the micro turbine engine control system.

Key words: micro turbojet engine; speed control system; LADRC controller; electronic control unit; half-bridge driving circuit

收稿日期: 2024-02-05; 修回日期: 2024-04-08

基金项目:直升机旋翼动力学国家级重点实验室基金资助项目(9140C400504130C4148)

通信作者: 徐锦法(1963-), 男, 博士, 教授。 E-mail: xjfae@nuaa. edu. cn

引用格式:袁星宇,徐锦法.微型涡喷发动机转速控制系统设计与验证[J].航空工程进展,XXXX,XX(XX):1-8.

YUAN Xingyu, XU Jinfa. Design and validation of a micro turbine engine speed control system[J]. Advances in Aeronautical Science and Engineering, XXXX, XX(XX): 1-8. (in Chinese)

0 引 言

微型涡喷发动机的推力在1000 N以下^[1],体 积小、质量轻、成本低、易于维护,非常适合作为微 小型飞行器的推进动力装置、辅助动力单元或分 布式能源系统的发电装置^[2-4],是现今能源系统与 推进动力领域的研究热点。而微型涡喷发动机的 控制核心——电子控制器(Electronic Control Unit,简称ECU)则是微型涡喷发动机研究中的重 中之重。目前,德国JetCat、荷兰AMT、丹麦Simjet、中国玄云等公司都开发了各具代表性的电子 控制器^[5]。

涡喷发动机控制的目的是使发动机输出期望 推力,但在飞行过程中推力无法直接测量,通常采 用转子转速或压比间接描述^[6],先进控制方法则采 用基于模型[7-8]或数据[9]的方法估计得到。现有微 型涡喷发动机控制系统大多基于经典PID控制原 理,对微型涡喷发动机这类非线性系统的控制效 果并不理想。国外,Főző L^[10]设计了模糊自适应 PID 控制器,较经典 PID 控制效果提高 30%,但模 糊规则的确定较为依赖工程经验。国内,李慧 琳^[11]引入模糊神经网络,无需工程经验便可实现 PID参数在线整定,但模糊神经网络学习训练需要 实时在线,实际应用并不容易实现。另一方面,控 制系统的硬件实现及其相关电路必须可靠,尤其 是功率驱动部件在控制过程中不能出现误动作。 常用的半桥式功率驱动电路上下桥 MOSFET 直 连,存在桥臂直通隐患。王占扩^[12]设计基于门极 驱动电压检测的直通短路保护电路能避免桥臂直 通: Ji S^[13]通过检测 MOSFET 导通压降变化趋势 判断电路是否短路,用旁通电路终止短路状态发 生。但这类方法设计复杂,使用器件多。

本文以某型微型涡喷发动机为研究对象设计 转速闭环控制系统,详细介绍系统设计原理、硬件 实现、软件开发,采用基于线性自抗扰控制技术设 计发动机转速闭环控制器,硬件实现涉及油泵驱 动电路、MOSFET导通延时电路设计等,并通过 构建台架试验测试平台验证微型涡喷发动机转速 控制系统设计。

1 转速控制系统设计

1.1 系统组成结构

微型涡喷发动机控制系统由发动机本体、

ECU、传感器、驱动执行部件和监控上位机构成, 如图1所示。ECU是控制系统核心,集成有发动 机状态参数采集、数据分析处理、执行机构控制等 功能^[14-15]。传感器用于测量压气机转速、尾气温度 等状态参数。点火器、起动电机、油泵等执行机构 协调作动实现发动机点火起动、转速稳定控制等 过程。监控上位机则用于操控者监视发动机运行 状态参数、发送控制指令。

图 1 國型海峽反列机拴耐系统结构性图 Fig. 1 Control system block diagram of micro turbine engine

1.2 转速控制律设计

微型涡喷发动机转速控制系统如图2所示,被 控对象为非线性系统,w是外界扰动,控制律由线 性状态误差反馈(LSEF)和线性扩张状态观测器 (LESO)构成。

图 2 转速控制结构方框图 Fig. 2 Block diagram of engine speed control

1) 线性扩张状态观测器 LESO

设定微型涡喷发动机转速为状态变量 x_1 ,总扰 动 $f(x_1, w)$ 为状态变量 x_2 ,则系统运动方程为

$$\begin{cases} \dot{x}_{1} = x_{2} + b \cdot u \\ \dot{x}_{2} = \dot{f}(x_{1}, w) \\ y = x_{1} \end{cases}$$
(1)

设计其线性扩张状态观测器为

$$\begin{cases} e = y - z_1 \\ \dot{z}_1 = \beta_1 \cdot e + z_2 + b_0 \cdot u \\ \dot{z}_2 = \beta_2 \cdot e \end{cases}$$
(2)

式中: z_1 、 z_2 分别为 x_1 、 x_2 的估计值; β_1 、 β_2 为观测器 增益,按极点配置法确定^[16]。

令观测器带宽为 w_0 ,将系统闭环极点配置在 $-w_0$ 处得到:

$$s^{2} + \beta_{1} \cdot s + \beta_{2} = (s + w_{0})^{2} = 0$$
 (3)

则 $\beta_1 = 2 \cdot w_0, \beta_2 = w_0^2$ 。

2) 线性状态误差反馈控制 LSEF

线性扩张状态观测器估计得到的系统总扰动 用于控制输出补偿,则有控制量*u*为

$$u = u_0 - \frac{z_2}{b_0} \tag{4}$$

原系统简化为线性积分器串联型系统,可用 比例控制律控制,即:

$$u_0 = k_p(r - z_1) \tag{5}$$

式中: u_0 为控制器输出量;r为系统输入指令; z_1, z_2 为系统状态观测变量; k_p, k_d 为控制器增益,用极点配置法确定。

综上,微型涡喷发动机转速控制律为

$$\begin{cases} u_{0} = w_{c}(r - z_{1}) \\ u = u_{0} - z_{2}/b_{0} \\ \dot{z}_{1} = 2w_{0}(y - z_{1}) + z_{2} + b_{0} \cdot u \\ \dot{z}_{2} = w_{0}^{2}e \end{cases}$$
(6)

2 转速控制硬件实现

(

ECU硬件电路由处理器核心模块、执行部件 驱动模块、转速信号采集模块、电源模块、尾气温 度采集模块、通信模块和环境温度/压力采集模块 组成,前3项是实现发动机转速控制的核心。

2.1 处理器核心模块

ECU处理器选用 STM32F103VET6芯片,含 3个12位 ADC、4个16位定时器、512 KB的 Flash 以及多个 USART、IIC、SPI通信接口^[19],72 MHz 主频满足微型涡喷发动机控制任务要求,相关引 脚资源映射如表1所示。

表 1	引脚资源映射表	

	1 able 1	Fin resources mapping table		
序号	对应引脚	引脚配置	功能	
1	PA9	USART1_TX	向上位机发送数据	
2	PA10	USART1_RX	接收上位机指令	
3	PA8	TIM1_CH1	发动机转速信号输入	
4	PB6	TIM4_CH1	点火器控制信号输出	
5	PB7	TIM4_CH2	电机控制信号输出	
6	PB8	TIM4_CH3	油泵控制信号输出	
7	PC6	TIM8_CH1	油泵阀控制信号输出	
8	PC7	TIM8_CH2	点火阀控制信号输出	

2.2 油泵驱动电路

油泵性能影响发动机运行状态,直流电机驱动油泵,结构简单、质量轻便、响应迅速,控制油泵的本质是控制直流电机,用半桥式驱动电路以脉宽调制(Pulse Width Modulation,简称PWM)方式实现^[18]。半桥式驱动电路存在桥臂直通隐患,为避免隐患发生,内设一延时电路,确保一侧MOS-FET导通时,另一侧MOSFET处于可靠截止状态。综合MOSFET可承受的最大电压、最大持续电流以及器件尺寸等因素,选用FR5305作为上桥P-MOSFET,LR7843作为下桥N-MOSFET,驱动电路原理图如图3所示。

图 3 油泵驱动电路原理图 Fig. 3 Schematic diagram of fuel pump drive circuit

图中,工作电压为10V,电阻 R_1 、 R_2 、 R_3 和二极 管 D_1 、 D_2 为延时电路元器件,用于延长FR5305和 LR7843的导通时间,延时时长由电阻 R_1 、 R_2 、 R_3 决 定,具体有:

1) 确定约束条件

计算油泵驱动电路参数时的约束条件为:

 $t_{\rm FR5305_ON} > t_{\rm LR7843_OFF}$ (7)

 $t_{\rm LR7843_ON} > t_{\rm FR5305_OFF}$ (8)

查找数据手册,取FR5305极间电容 $C_{\text{FR5305_iss}}$ =1200 pF, $C_{\text{FR5305_rss}}$ =250 pF, $|V_{\text{FR5305_GS(th)}}|$ 为2V。 LR7843极间电容 $C_{\text{LR7843_iss}}$ =4380 pF, $C_{\text{LR7843_rss}}$ =430 pF, $V_{\text{LR7843_GS(th)}}$ 为1.4V。

3) 计算 FR5305 最大关断时间并确定电阻 R1

FR5305关断过程对应 In 处 PWM 信号从高电 平下降至低电平的过程,电荷流经 D₁, R1 与 C_{FR5305_iss}构成 RC 充电电路。RC 电路计算公式为

 $V_{t} = V_{0} + (V_{1} - V_{0}) \cdot (1 - e^{-\frac{1}{RC}})$ (9)

式中: V_0 为电容初始电压值; V_1 为电容最终电压值, V_1 表示t时刻电压值;e为自然常数;R为RC电路中电阻值;C为RC电路中电容值。

取 $V_0=0V, V_1=10V, V_t=8V$ 得到:

$$t = -R_1 \cdot 1.2 \times 10^{-9} \cdot \ln\left(1 - \frac{8}{10}\right) \quad (10)$$

由式(10)可知,FR5305关断时间取决于电阻 *R*₁值。设定FR5305在2us时达到8V,求得*R*₁= 1035.56Ω,取*R*₁阻值为1kΩ。

4) 计算LR7843 最小导通时间

按约束条件,取LR7843最小导通时间为10倍 FR5305关断时间,即:

 $t_{\text{LR7843_ON(MIN)}} = 10 \cdot t_{\text{FR5305_OFF}} = 20 \text{us}$ (11)

5) 计算电阻 R₃值

LR7843导通过程中由于二极管 D_1 存在,电荷 通过电阻 R_1 和 R_3 流人LR7843的栅极,在 $V_{LR7843,GS}$ 达到 $V_{LR7843,GS(th)}之前, R_1 R_3 与 C_{LR7843,GS}$ 共同构成 RC 充电电路^[17]。将 $V_0=0$ V, $V_1=10$ V, $V_t=V_{LR7843,GS(th)}=1.4$ V, $C_{LR7843,GS}=C_{LR7843,iss}-C_{LR7843,rss}=3950$ pF代入式(3)中得到:

$$R = R_1 + R_3 = \frac{20 \times 10^{-5}}{-3.95 \times 10^{-9} \cdot \ln\left(1 - \frac{1.4}{10}\right)} = \frac{33\,571.11\,\Omega}{(12)}$$

由式(9)可知,在 V_0 , V_1 与 V_t 一定的前提下,R与t成正相关,取 R_3 =50 k Ω_o 。

6) 计算LR7843 最大关断时间

LR7843关断过程对应 In 处电位从低电平上 升至高电平的过程。 $C_{LR7843,iss}$ 释放的电荷经过二极 管 D_2 流入 GND。LR7843 最大关断时间即为 $V_{LR7843,GS}$ 从10V降至0V的过程中,电压达到 $V_{LR7843,GS(th)}$ 时间。将 $V_0=10$ V, $V_1=0$ V, $V_t=$ $V_{LR7843,GS(th)}=1.4$ V代入公式(9)中得到:

$$t = -R \cdot 4.38 \times 10^{-9} \cdot \ln \frac{1.4}{10} \tag{13}$$

由于此时 R≈0 Ω, 故 LR7843 关断时间 t_{LR7843 OFF}≈0 s。

7) 确定 FR5305 最小导通时间

按约束条件(7),取t_{FR5305_ON}=20 us。

8) 计算电阻 R₂值

FR5305 导通过程为 $V_{\text{FR5305},\text{GS}}$ 逐渐下降至 $|V_{\text{FR5305},\text{GS}(\text{th})}|$ 的过程。由于二极管 D_1 反向截止,来 自极间电容 $C_{\text{FR5305},\text{GS}}$ 的电荷通过电阻 R_2 流入 GND,二者共同构成 RC 放电电路。将 $V_0=10$ V, $V_1=0$ V, $V_t=8$ V, t=20 us, $C_{\text{FR5305},\text{GS}}=C_{\text{FR5305},\text{iss}}-C_{\text{FR5305},\text{rss}}=950$ pF 代入式(9)中得 $R_2=94$ 345.69 Ω ,取 $R_2=100$ kΩ。

2.3 转速信号采集

微型涡喷发动机转速信号测量使用磁阻传感器,压气机叶片旋转时,传感器感应叶片上磁铁产生的磁场变化并将其转化为相应的电压信号。转速信号由主控处理器采集得到,为提高抗干扰能力加入滞回比较器,其电压传输特性及其电路如图4~图5所示。滞回比较器阈值电压U_{T1}和U_{T2}由电阻R₃、R₄的大小决定,即:

$$\begin{cases} U_{\text{T1}} = \frac{R_1 + R_2}{R_2} \cdot U_{\text{REF}} + \frac{R_1}{R_2} \cdot U_{\text{OL}} \\ U_{\text{T2}} = \frac{R_1 + R_2}{R_2} \cdot U_{\text{REF}} + \frac{R_1}{R_2} \cdot U_{\text{OH}} \end{cases}$$
(14)

式中:U_{REF}为滞回比较器参考端电压;U_{OH}为滞回 比较器输出的高电平电压;U_{OL}为滞回比较器输出 的低电平电压。

确定电路特性 $U_{REF}=2.5 V \setminus U_{OH}=5 V \setminus U_{OL}=$ 0 V \ $U_{T1}=3 V \setminus U_{T2}=2 V$,最终确定 R_3 阻值为 2 k\Omega, R_4 阻值为 10 kΩ。

图 4 滞回比较器电压传输特性 Fig. 4 Transfer characteristic for hysteresis comparator

图 5 滞回比较器电路图 Fig. 5 A simple comparator circuit with hysteresis

2.4 其他模块

其他模块协同工作,确保控制系统正常运行。 电源模块为板载电子元器件提供工作电压,分别 采用DC-DC降压芯片和线性稳压芯片实现10V 转5V和5V转3.3V两级降压。尾气温度采集模 块使用MAX31855芯片对热电偶输出的电压信号 进行放大、转换和补偿,并通过三线SPI接口将温 度值发送给主控处理器。电磁阀驱动模块用于驱 动各电磁阀作动,驱动IC选用ULN2003A芯片。 为满足不同使用需求,通信模块分为串口与以太 网两部分,前者使用MAX3232将主控处理器输出 的TTL电平转为RS232电平,后者由W5500芯片 实现。环境温度/压力采集模块基于BMP180芯片 设计,主控处理器通过IIC接口获取发动机所处环 境参数。

3 转速控制软件实现

3.1 程序软件架构

微型涡喷发动机 ECU 软件程序架构如图 6 所 示,采用模块化编程思想,由驱动层、中间层和应 用层三部分组成,不同层之间由接口实现数据传 输。驱动层包含所有板载硬件外设的驱动程序, 包括 SPI、IIC、TIM 等;中间层包括轮询函数和中 断服务函数,其程序与芯片外设直接相关,按功能 需求分为控制信号输出、尾气温度采集、转速计算 等多个模块。应用层则为发动机运行状态判断、 自动起动、开/闭环控制等程序。本文重点介绍转 速测量与计算程序和转速闭环控制程序的实现。

图 6 ECU程序架构图 Fig. 6 ECU program architecture diagram

3.2 转速测量与计算

转速计算与数据采集方法密切相关,转速信 号测量有测周法或测频法。测量相邻两个上升沿 或下降沿间的时长,即压气机叶片旋转一周时间, 为测周法。测量单位时间内出现上升沿或下降沿 的次数为测频法。前者在低频时具有较高的精确 度,后者则更适合较高转速的场景。微型涡喷发 动机正常运转时转速可达每分钟上万转,故采用 测频法计算转速。

测频法转速测量使用 STM32F103 高级定时器(TIM1)和基本定时器(TIM6)这两个外设。 TIM1 配置为输入捕获模式,1 MHz 计时频率,上 升沿中断触发。用该配置模式,定时器能够检测 对应引脚的电平边沿,转速信号从低电平跃升至 高电平,定时器输入捕获中断触发,定义16位全局 变量 *n*_{Tr}存储中断触发次数。TIM6 配置为计数模 式,每100ms 触发一次中断执行中断服务函数,读 取变量 *n*_{Tr}的值,根据式(15)计算发动机转速。

 $Ng = n_{\rm Tr} \cdot 600 \tag{15}$

3.3 转速闭环控制

发动机转速闭环控制程序执行流程如图7所示。ECU上电,LADRC控制器参数初始化,随后

进入发动机转速闭环控制。获取给定的目标转速,根据上一时刻控制器状态量z₁计算控制量u, 并执行控制信号输出,调节电机转速,油泵驱动电路确保硬件实现无误动作。程序计算得到发动机

$$\begin{cases} u_{0}(k+1) = w_{c}[Nr(k+1) - z_{1}(k)] \\ u(k+1) = u_{0}(k+1) - z_{2}(k)/b_{0} \\ e(k+1) = Ng(k) - z_{1}(k) \\ z_{1}(k+1) = z_{1}(k) + h[2w_{0}e(k+1) + z_{2}(k) + b_{0}u(k+1)] \\ z_{2}(k+1) = z_{2}(k) + hw_{0}^{2}e(k+1) \end{cases}$$
(16)

所示。

式中:Nr、Ng、e、u、h分别为目标转速、测量转速、转速误差量、控制器输出量、控制周期。

图 7 转速闭环控制程序流程图 Fig. 7 Flow chart of closed-loop control procedure for engine speed

4 转速控制系统试验验证

4.1 试验平台构建

转速控制、油泵驱动电路与微型涡喷发动机 本体一起构建转速控制系统试验测试装置,ECU 实物样件如图8所示,接入转速控制系统的微型涡 喷发动机试验装置如图9所示。

图 8 电子控制器样件(背面) Fig. 8 The back of the electronic control unit prototype

转速,作为反馈信号用于扩张状态观测器状态量 z₁、z₂更新。控制器各状态量计算公式如式(16)

图 9 转速闭环控制系统验证平台 Fig. 9 Verification platform of closed-loop control system for engine speed

4.2 油泵驱动电路测试

驱动电路输入 50% 占空比 PWM 信号,各点 电位变化情况如图 10(a)和图 10(b)所示,其中,绿 色线为 FR5305 栅极电位变化曲线,蓝色线为 LR7843 栅极电位变化曲线,黄色线为 Motor 正极 电位变化曲线。从图 10(a)可以看出:FR5305 栅 极电位降低到一定值,Motor 正极电位开始增大之 前,LR7843 栅极电位就已经趋近于0,即 LR7843 在 FR5305 导通之前就已经截止。从图 10(b)可以 看出:FR5305 在 LR7843 导通之前就已经截止。 可见,本文设计的半桥式驱动电路和延时电路参 数选择确保电路上下桥 MOSFET 不会同时导通。

(a) FR5305导通,LR7843截止

(b) FR5305截止, LR7843导通

图 10 FR5305 栅极, LR7843 栅极, 油泵正极电位变化情况 Fig. 10 Waveforms of FR5305(G), LR7843(G), fuel pump(+)

4.2 转速控制验证

т

由台架试验验证转速控制律,发动机进入慢 车状态后启动转速闭环控制,给定不同目标转速, 记录在控制律作用下的发动机转速控制数据。控 制器参数取值如表2所示,台架发动机转速控制结 果如图11所示,图中黑线为目标转速;红线为发动 机实际转速曲线;蓝线为控制器输出的油泵PWM 控制量。从图11可以看出:当目标转速变化时,控 制器输出和发动机转速也随之变化,调节时间短, 超调量小。任取图中5个阶跃过程计算发动机转 速控制的稳态误差,其结果如表3所示,可以看出: 各阶跃过程的稳态误差均小于1%,满足设计 要求。

	表 2	控制器参数取值
able 2	The	value of controller parar

1 able 4	Table 2 The value of controller parameter			
参数	取值	参数	取值	
w_0	2	β_2	4	
$k_{ m p}$	0.5	b_0	2 000	
β_1	4			

Fig. 11 Engine testing data curve

表る 二	五个阶跃过程的稳态误差	토

Table 3 The steady-state error of five step responses			
	目标转速/ (r·min ⁻¹)	最大转速偏差/ (r·min ⁻¹)	相对误差/%
1	52 500	150	0.286
2	57 750	291	0.504
3	68 250	212	0.311
4	84 000	302	0.360
5	94 500	275	0.291

综上,使用本文设计的转速控制律能够实现 发动机转速闭环控制,控制精度和响应速度均能 满足控制要求。

5 结 论

 1)设计了能够避免桥臂直通问题的半桥式油 泵驱动电路,并给出了其中延时电路参数选择的 详细过程。驱动电路控制信号导通截止测试表明 该油泵驱动电路具有稳定可靠的通断特性。

2) 基于 STM32 芯片设计并制作微型涡喷发 动机电子控制器。该控制器能够实现对发动机数 据的实时采集、处理与分析,对各执行机构的控制 以及与监控上位机的通信。

 3)设计搭建了微型涡喷发动机控制系统。该 系统能够实现发动机点火、起动、燃油供给、发动 机工况调节、转速闭环控制、限制保护、状态监测、 遥测通讯等功能。

4)设计了用于微型涡喷发动机转速控制的 LADRC控制器,构建了转速控制系统试验装置, 试验结果表明所设计的转速控制系统的控制精度 和响应速度均能满足控制要求,具有实际工程应 用价值。

参考文献

 [1] 陈敏泽,陈玉春,贾琳湖,等.微型涡喷发动机总体综合设 计应用研究[J]. 航空工程进展, 2022, 13(4): 107-116.
 CHEN Minze, CHEN Yuchun, JIA Linyuan, et al. Research on the application of integrated design on micro turbojet engine[J]. Advances in Aeronautical Science and Engineering, 2022, 13(4): 107-116. (in Chinese)

 [2] 薛然然,李凤超. 微型涡轮喷气发动机发展综述[J]. 航空 工程进展, 2016, 7(4): 410-417.
 XUE Ranran, LI Fengchao. An overview on development of micro turbojet engines[J]. Advances in Aeronautical Science and Engineering, 2016, 7(4): 410-417. (in Chinese)

[3] LANDAIS S, VALLE R, FOURMAUX A, et al. Ad-

vances in the development of a microturbine engine[J]. Journal of Engineering For Gas Turbines and Power: Transactions of the ASME, 2014, 136(7): 71201.

- [4] HOSSEINI S E. Micro-power generation using micro-turbine (moving) and thermophotovoltaic (non-moving) systems[J]. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power & Energy, 2019(3): 334-345.
- [5] 李慧琳. 微型涡喷发动机控制器开发研究[D]. 南京:南京 理工大学, 2021.
 LI Huilin. Development and research of micro-turbojet engine controller[D]. Nanjing: Nanjing University of Science &. Technology, 2021. (in Chinese)
- [6] BENEDA K. Development of a modular FADEC for small scale turbojet engine// 2016 IEEE 14th International Symposium on Applied Machine Intelligence and Informatics. Herlany, Slovakia: IEEE, 2016: 51-56.
- [7] CHATTERJEE S, LITT J. Online model parameter estimation of jet engine degradation for autonomous propulsion control[C]// 2003 AIAA Guidance, Navigation, and Control Conference and Exhibit. US: AIAA, 2003: 5425-5431.
- [8] 金崇文,郑前钢,张海波,等.基于复合推进系统动态模型-状态变量模型的航空发动机直接推力预测控制[J].推进技术,2022,43(1):354-363.
 JIN Chongwen, ZHENG Qiangang, ZHANG Haibo, et al. Direct thrust predictive control of aeroengine based on compact propulsion system dynamic model-state variable model
- [J]. Journal of Propulsion Technology, 2022, 43(1): 354-363. (in Chinese)
 [9] 宋汉强,李本威,张赟,等.基于聚类与粒子群极限学习机的航空发动机推力估计器设计[J].推进技术, 2017, 38

(6): 1379–1385.
SONG Hanqiang, LI Benwei, ZHANG Yun, et al. Aeroengine thrust estimator design based on clustering and particle swarm optimization extreme learning machine [J]. Journal of Propulsion Technology, 2017, 38(6): 1379–1385.
(in Chinese)

- [10] FŐZŐ L, ANDOGA R. Advanced control of an electric fuel-oil pump for small turbojet engines [J]. Aerospace, 2022, 9(10): 607-613.
- [11] 李慧琳,封锋.基于模糊神经网络的涡喷发动机控制系统 设计[J].计算机测量与控制,2021,29(2):53-57.

LI Huilin, FENG Feng. Design of turbojet engine control system based on fuzzy neural network [J]. Computer Measurement & Control, 2021, 29(2): 53-57. (in Chinese)

[12] 王占扩,童朝南,黄伟超. SiC MOSFET 短路特性及过流 保护研究[J]. 中国电机工程学报,2020,40(18):5751-5760.

WANG Zhankuo, TONG Chaonan, HUANG Weichao. Research on short-circuit characteristics and overcurrent protection of SiC MOSFET [J] Proceedings of the CSEE, 2020, 40(18): 5751-5760. (in Chinese)

- JI S, LAITINEN M, HUANG X, et al. Short circuit characterization and protection of 10 kV SiC MOSFET [J].
 IEEE Transactions on Power Electronics, 2018, 24 (2) : 1755-1764.
- [14] 彭鸿博,杨创,于军力,等.基于试验的微型涡喷发动机起动控制研究[J].航空科学技术,2021,32(7):21-26.
 PENG Hongbo, YANG Chuang, YU Junli, et al. Research on starting control of micro turbojet engine based on experiment [J], Aeronautical Science & Technology, 2021, 32 (7):21-26. (in Chinese)
- [15] 苏三买,马瑞,冷文彬. 微型涡喷发动机数字控制实时半物理模拟试验系统[J]. 航空动力学报,2001(1):93-96.
 SU Sanmai, MA Ru, LENG Wenbini. Semi-physical real time simulation of digital control system for microturbo-engine[J]. Journal of Aerospace Power, 2001, 16(1):93-96. (in Chinese)
- [16] GAO Z. Scaling and bandwidth-parameterization based controller tuning [C] // Proceedings of the 2003 American Control Conference. US: IEEE, 2003: 1-12.
- [17] DENG B, BO Z, JIA Y, et al. Research on STM32 development board based on ARM Cortex-M3[C] // 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology. Weihai: IEEE, 2020: 266-272.
- [18] 糜坤年,张天宏. 微型涡喷发动机燃油计量技术研究[J]. 航空动力学报,2008(11):2137-2141.
 MEI Kunnian, ZHANG Tianhong. Study on fuel metering for the micro turbine engine[J]. Journal of Aerospace Power, 2008(11):2137-2141. (in Chinese)
- BAI Y, PATTANAYAK D, HUANG A Q. Analysis of dv/dt Induced Spurious Turn-on of MOSFET [C] // 2003
 CPES Annual Seminar. US: IEEE, 2003: 1-12.

(编辑:丛艳娟)