Governed by: Ministry of Industry and Information Technology of the People's Republic of China
Sponsored by: Northwestern Polytechnical University  Chinese Society Aeronautics and Astronautics
Address: Aviation Building,Youyi Campus, Northwestern Polytechnical University
Review of Safe Operation State Assessment Methods Based on Transfer Learning
Affiliation:

1.BeiHang University;2.Beijing University of Technology

Clc Number:

{V240.2};TP391

Fund Project:

National key research and development project (2019YFB1706001); Industrial Internet innovation and development project (TC190H468); National natural science foundation of China (61304111 and 71231001); Beijing natural foundation (L161003)

  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • | | | |
  • Comments
    Abstract:

    Transfer learning is a method to solve problems in a given field by using the existing knowledge in other related fields. It can effectively suppress the impact of data loss on the accurate establishment of state evaluation model, so as to lay a foundation for safe and reliable operation of equipment and maintenance decision. This paper summarizes the current research situation of using transfer learning to realize running state evaluation in the absence of device product data and discusses the future research direction of transfer learning in the field of state evaluation.

    Reference
    [1]Holger F, Sebastian S, Jurgen J, et al. Analysis of the Cyber-Security of industry 4.0 technologies based on RAMI 4.0 and identification of requirements[C]. 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA),Berlin, Germany:Institute of Electrical and Electronics Engineers Inc. 2016.
    [2]叶永伟, 葛沈浩, 任设东, 等. 基于STM32的汽车涂装线监控系统研究与实现[J]. 计算机测量与控制, 2015,23(06):2022-2025.
    [3]敖云晖, 战仁军. 机动装备状态监测与故障诊断技术的研究[J]. 国防技术基础, 2008(12):38-41.
    [4]王娟, 张崇刚. 航空电子设备健康管理系统的设计与实现[J]. 电子测试, 2017(11):86-87.
    [5]胡昌华, 施权, 司小胜, 等. 数据驱动的寿命预测和健康管理技术研究进展[J]. 信息与控制, 2017,46(1):72-82.
    [6]Chen D, Yang S, Zhou F. Transfer Learning Based Fault Diagnosis with Missing Data Due to Multi-Rate Sampling[J]. Sensors, 2019,19(8):1826.
    [7]庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015,26(01):26-39.
    [8]吁松. 基于关系映射的迁移模型研究及应用[D]. 哈尔滨: 哈尔滨工业大学, 2018.
    [9]Pan S J, Yang Q. A Survey on Transfer Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010,22(10):1345-1359.
    [10]黄育钊. 基于样本迁移的多核学习算法研究[D]. 广州: 中山大学软件工程, 2010.
    [11]Yi Y, Doretto G. Boosting for transfer learning with multiple sources[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, United states:IEEE Computer Society, 2010.
    [12]Pan S J, Tsang I W, Kwok J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011,22(2): 199-210.
    [13]姚旭晨.基于深度迁移学习的图像分类方法研究[D]. 合肥: 合肥工业大学, 2019.
    [14]Oquab M, Bottou L, Laptev I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C].2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, United states: IEEE Computer Society, 2014.
    [15]Shen F, Chen C, Yan R, et al. Bearing fault diagnosis based on SVD feature extraction and transfer learning classification[C]. 2015 Prognostics and System Health Management Conference (PHM), Beijing, China: Institute of Electrical and Electronics Engineers Inc., 2015.
    [16]Tang S, Tang H, Chen M. Transfer-learning based gas path analysis method for gas turbines[J]. Applied Thermal Engineering, 2019,155:1-13.
    [17]张振良, 刘君强, 黄亮, 等. 基于半监督迁移学习的轴承故障诊断方法[J]. 北京航空航天大学学报, 2019,11(45):1-15.
    [18]杨志淳, 周任飞, 沈煜, 等. 基于并行化大数据流及迁移学习的配电变压器故障在线辨识-诊断模型[J]. 高电压技术, 2019,045(006):1697-1706.
    [19]马剑, 赵万琳, 吕琛, 等. 一种基于深度学习的锂离子电池寿命迁移预测方法:中国, ZL20171034 1928.X[P]. 2019-09-27.
    [20]康守强, 胡明武, 王玉静, 等. 基于特征迁移学习的变工况下滚动轴承故障诊断方法[J]. 中国电机工程学报, 2019, 039(003): 764-772.
    [21]刘志宇, 黄亦翔. 基于深度学习和迁移学习的液压泵健康评估方法[J]. 机械与电子, 2018,36(09):69-73.
    [22]谭俊杰, 杨先勇, 徐增丙, 等. 基于无监督迁移成分分析和深度信念网络的轴承故障诊断方法[J]. 武汉科技大学学报, 2019, 42(06):456-462.
    [23]Long M, Cao Y, Cao Z, et al. Transferable Representation Learning with Deep Adaptation Networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2018:1.
    [24]Giglia K C, Aldrich C. Operational state detection in hydrocyclones with convolutional neural networks and transfer learning[J]. Minerals Engineering, 2020,149.
    [25]Shao S, McAleer S, Yan R, et al. Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning[J]. IEEE Transactions on Industrial Informatics, 2019,15(4):2446-2455.
    [26]Bousmalis K, Silberman N, Dohan D, et al. Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, United states: Institute of Electrical and Electronics Engineers Inc., 2017.
    [27]Tan C, Sun F, Kong T, et al. A Survey on Deep Transfer Learning[C]. 27th International Conference on Artificial Neural Networks, Cham, Springer International Publishing, 2018.
    [28]Zhang J, Li W, Ogunbona P, et al. Recent advances in transfer learning for cross-dataset visual recognition: A problem-oriented perspective[J]. ACM Computing Surveys, 2019,52(1).
    [29]Xie Y, Zhang T. A Transfer Learning Strategy for Rotation Machinery Fault Diagnosis based on Cycle-Consistent Generative Adversarial Networks[C]. Chinese Automation Congress (CAC), Xi'an, China: Institute of Electrical and Electronics Engineers Inc., 2018.
    [30]金余丰, 刘晓锋, 姚美常, 等. 基于域对抗迁移的变工况滚动轴承故障诊断模型[J]. 自动化仪表, 2019,40(12):55-60, 65.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

HongSheng, LiWenxin, LiuHao. Review of Safe Operation State Assessment Methods Based on Transfer Learning[J]. Advances in Aeronautical Science and Engineering,2020,11(4):454-460

Copy
Share
Article Metrics
  • Abstract:1303
  • PDF: 1779
  • HTML: 0
  • Cited by: 0
History
  • Received:April 27,2020
  • Revised:June 23,2020
  • Adopted:July 01,2020
  • Online: August 25,2020
Article QR Code