Governed by: Ministry of Industry and Information Technology of the People's Republic of China
Sponsored by: Northwestern Polytechnical University  Chinese Society Aeronautics and Astronautics
Address: Aviation Building,Youyi Campus, Northwestern Polytechnical University
Research and application trends of predictive techniques in aircraft maintenance
Affiliation:

Civil Aviation University of China

Clc Number:

V267

  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • | | | |
  • Comments
    Abstract:

    Predictive maintenance technique basing on real-time acquisition, transmission and analysis of aircraft data has been a trend in aviation industry. Starting from the technical connotation and systematic function of aircraft maintenance, combining with the research hotspots obtaining from journal articles and patents in this field, we systematically describe the developing status and tendency of predictive aircraft maintenance techniques. Then we sort out the application of new generation of information techniques such as AI, automatic maintenance, autonomous drone, robot, and intelligent supply chain. Finally, basing on the generalization of technical framework and key techniques, we proposed several strategic suggestions for domestic development and localization of predictive aircraft maintenance techniques.

    Reference
    [1]Paul S, David J S, 蓝楠. 维修业各方积极推动数字化维修记录的发展[J].航空维修与工程,2016(10):18-19.
    [2]孙耀吾,贺石中.高技术服务创新网络开放式集成模式及演化——研究综述与科学问题[J].科学学与科学技术管理,2013,34(01):48-55.
    [3]张显镇,刘北萍,张丕宇.预测性维修发展及应用浅析[J].科技信息,2009(36):650.
    [4]张斌,李琦.预测性与预防性维修之比较[J].冶金设备,2017(S2):332-335.
    [5]张弥.“大数据”时代数字化飞机维修展望[J].科技经济市场,2016(05):102.
    [6]郭发展,邹赫,刘志荣,朱睿.中国民航维修业的现状与挑战[J].航空工程进展,2015,6(04):495-501.
    [7] Shin I, Lee J, Lee J Y, et al. A framework for prognostics and health management applications toward smart manufacturing systems[J]. Int. J. of Precis. Eng. and Manuf.-Green Tech, 2018, 5: 535–554
    [8] Michael G. Pecht, Myeongsu Kang. Prognostics and health management of electronics: fundamentals, machine learning, and the internet of things[M]. Piscataway, N J:Wiley-IEEE Press, 2018.
    [9] Changduk Kong. Review on advanced health monitoring methods for aero gas turbines using model based methods and artificial intelligent methods[J]. Int’l J. of Aeronautical Space Sci., 2014, 15(2): 123–137.
    [10]李本威,林学森,杨欣毅,赵勇,宋汉强.深度置信网络在发动机气路部件性能衰退故障诊断中的应用研究[J].推进技术,2016,37(11):2173-2180.
    [11]顾祝平,郑逢亮.基于状态维修策略下的数据自动获取技术[J].航空维修与工程,2012(03):42-45.
    [12]陈华. 中国西南航空公司飞机维修工程系统项目实施方法[D].成都:电子科技大学,2003.
    [13]Alex D, 李璇.先进复合材料的维修日益复杂[J].航空维修与工程,2018(12):17-19.
    [14]张显镇,刘北萍,张丕宇.预测性维修发展及应用浅析[J].科技信息,2009(36):650.
    [15]曹建.民用飞机预测性维修实施方案研究[J].科技展望,2015,25(21):65.
    [16]蓝楠.突破创新 合作共赢——2015中国航空维修峰会侧记[J].航空维修与工程,2015(11):16-19.
    [17]孙惠斌,颜建兴,魏小红,等.数字孪生驱动的航空发动机装配技术[J].中国机械工程,2020,31(07):833-841.
    [18]曹惠玲,崔科璐,郭静.非完美维修下民航发动机剩余寿命预测[J/OL].机械科学与技术:1-7[2020-06-09].https://doi.org/10.13433/j.cnki.1003-8728.20200001.
    [19] Boeing. Airplane Health Management (AHM)[EB\OL]. (2020-06-09).https://www.boeingservices.com/maintenance-engineering/airplane-health-management-ahm/.
    [20]Honeywell. Extend the value[EB\OL]. (2020-06-09).https://aerospace.honeywell.com/en/learn/services/maintenance-and-service-plans.
    [21]工业互联网产业联盟.工业互联网体系架构(版本2.0)[R].2020.
    [22] Industrial Internet Consortium. Digital twins for industrial applications: definition, business values, design aspects, standards and use cases (Version 1.0) [R]. 2020.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

KONG Xu, YU Deshui, DING Kunying, LIU Peipei. Research and application trends of predictive techniques in aircraft maintenance[J]. Advances in Aeronautical Science and Engineering,2021,12(2):21-29

Copy
Share
Article Metrics
  • Abstract:1346
  • PDF: 3017
  • HTML: 0
  • Cited by: 0
History
  • Received:August 24,2020
  • Revised:October 28,2020
  • Adopted:November 03,2020
  • Online: April 24,2021
Article QR Code