Governed by: Ministry of Industry and Information Technology of the People's Republic of China
Sponsored by: Northwestern Polytechnical University  Chinese Society Aeronautics and Astronautics
Address: Aviation Building,Youyi Campus, Northwestern Polytechnical University
Method of high-efficiency propeller for solar-powered UAV in low altitude
Affiliation:

Nanchang Hangkong University

Clc Number:

V211.3

  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • | | | |
  • Comments
    Abstract:

    Aiming to improve the endurance of solar-powered UAV in low altitude in a mission cycle, a high-efficiency propeller design method is proposed. According to the flight span curve of the solar-powered UAV, the climb and main cruise altitudes are selected as the design points. Firstly, based on the Betz minimum energy loss design criteria and the strip theory and its reverse derivation, the chord length and pitch under each design point are calculated Angular distribution, and then assign weights to the calculation results of each design point according to the flight span curve to obtain the final design chord length and pitch angle distribution. Finally, based on the CFD numerical simulation technology, the designed propeller is simulated and calculated on the basis of the verification algorithm. The results show that compared with the conventional propeller, the efficiency of the propeller designed in this paper is within the flight envelope of the entire mission cycle under the allowable power range. The interior has been significantly improved to meet the design requirements.

    Reference
    [1] S. D’Angelo and F. Berardi and E. Minisci. Aerodynamic performances of propellers with parametric considerations on the optimal design[J]. The Aeronautical Journal, 2002, 106(1060) : 313-320.
    [2] Ohad Gur and Aviv Rosen. Propeller Performance at Low Advance Ratio[J]. Journal of aircraft, 2005, 42(2) : 435-441.
    [3] Wald Q R . The aerodynamics of propellers[J]. Progress in Aerospace ences, 2006, 42(2):85-128.
    [4] 曹潇,王正平,贺云涛,刘刚.低空太阳能无人机研究现状及关键技术研究[J].战术导弹技术,2019(01):64-71.
    [5] 刘远强,郭金锁,项松,佟胜喜,姜文辉.基于片条理论的螺旋桨性能计算[J].沈阳航空航天大学学报,2013,30(01):43-46.
    [6] 李星辉,李权,张健.太阳能无人机高效螺旋桨气动设计[J].航空工程进展,2020,11(02):220-225,238.
    [7] 郭佳豪,周洲,范中允.一种耦合CFD修正的螺旋桨快速设计方法[J].航空学报,2020,41(02):67-76.
    [8] 唐伟,宋笔锋,张玉刚,焦俊.两个设计点的螺旋桨气动性能[J].航空动力学报,2017,32(02):354-363.
    [9] 王策,唐正飞,罗建.高性能螺旋桨优化设计[J].航空工程进展,2018,9(04):585-591.
    [10] 马晓平,宋笔锋.提高小型无人机螺旋桨效率的工程方法[J].西北工业大学学报,2004(02):209-212.
    [11] 谢辉,王力,张琳.一种适用于中小型无人机的新型螺旋桨设计[J].航空工程进展,2015,6(01):71-76.
    [12] 刘沛清.空气螺旋桨理论及其应用[M].北京:北京航空航天大学出版社,2006.
    [13] 任建勋.空气螺旋桨逆向建模[J].机械工程师,2014(06):132-133.
    [14] 王继群. 基于无动力排风扇叶片曲面的逆向设计及关键技术研究[D]. 北方工业大学,2009.
    [15] 刘远强,项松,佟刚,刘福佳,高峰.某电动飞机螺旋桨气动特性数值模拟与风洞试验[J].飞行力学,2017,35(03):81-84.
    [16] 王裕夫,刘振国,陶国权.某高空螺旋桨气动特性数值模拟与风洞试验[J].北京航空航天大学学报,2013,39(08):1102-1105.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Qiu Huizhuang, Jiang shanyuan, zhong bowen. Method of high-efficiency propeller for solar-powered UAV in low altitude[J]. Advances in Aeronautical Science and Engineering,2022,13(4):83-90

Copy
Share
Article Metrics
  • Abstract:747
  • PDF: 1583
  • HTML: 282
  • Cited by: 0
History
  • Received:August 04,2021
  • Revised:September 24,2021
  • Adopted:November 01,2021
  • Online: June 08,2022
Article QR Code