Governed by: Ministry of Industry and Information Technology of the People's Republic of China
Sponsored by: Northwestern Polytechnical University  Chinese Society Aeronautics and Astronautics
Address: Aviation Building,Youyi Campus, Northwestern Polytechnical University
Research Advances in Thermal-Acoustic Fatigue Problems of Aerocraft Structures
Affiliation:

First Aircraft Design and Research Institute of AVIC

Clc Number:

V215.5

  • Article
  • | |
  • Metrics
  • |
  • Reference [205]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The structures of hypersonic vehicle surfaces, engine baldes, internal ducts and exhaust ducts are pronse to thermal-acoustic fatigue damage when exposed to high temperature and high-intensity nosie environments. Thus, it is of more significance for improving the durability and reliability of such structures to study the thermal-acoustic fatigue problems. On the basis of literature review and summarization, this paper comprehensively ealborated on the new progress in the research of thermal-acoustic fatigue problems of aerocraft structures both domestically and internationally. Firstly, the research status of structural thermal-acoustic fatigue in foreign countries was reviewed from the 1970s to the present from a time perspective. Then, the work carried out by domestic research institutes and higher education institutions in this field was introduced according to the classification of research units. It showed that significant progress had been made in the theoretical research, simulation analysis and experimental technology of thermal-acoustic fatigue both domestically and internationally after half a century of development. The technical difficulties faced by the research on thermal-acoustic fatigue of aerocraft structures and the issues that need further research were also discussed at last.

    Reference
    [1]Blevins R D, Bofilios D, Holehouse I, etc. Thermo-vibro-acoustic loads and fatigue of hypersonic flight vehicle structure[R]. TR AFRL-RB-WP-TR-2009-3139, U.S. Air Force Research Lab, Goodrich Aerostructures Group, 2009.
    [2]扬子晚报. B-2轰炸机大半开了裂[EB/OL]. 2002-3-21. https://news.sina.cn/sa/2002-03-21/detail-ikkntiak6964493.d.html .
    Yangtse Evening Post. Most of B-2 bomber cracked [EB/OL]. 2002-3-21. https://news.sina.cn/sa/2002-03-21/detail-ikkntiak6964493.d.html.
    [3]百度文库. 诺斯罗普B-2“幽灵”轰炸机的诞生[EB/OL]. 2008-2-23. https://wk.baidu.com/view/ cc7207fb657d27274b73f242336c1eb91b339b?pcf=2.html.
    Air Force Wing. The birth of Northrop B-2 ‘Spirit’ stealth bomber [EB/OL]. 2008-2-23. https://wk.baidu.com/view/ cc7207fb657d27274b73f242336c1eb91b339b?pcf=2.html.
    [4]Hieken M H, Noonan W E, Shroyer E F. Sonic fatigue test methods at elevated temperatures[R]. Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, AFFDL-TR-73-8, 1973.
    [5]Schneider C W. Acoustic fatigue of aircraft structures at elevated temperatures[R]. AFFDL-TR -73-155, Lockheed-Georgia Company, 1974.
    [6]Maekawa S. On the sonic fatigue life estimation of skin structures at room and elevated temperatures [J]. Journal Vibration and Control, 1982, 80(1): 41-59.
    [7]Soovere J. The effect of acoustic/thermal environments on advanced composite fuselage panels [C].AIAA-83-0955, Structural Dynamics and Materials Conference, 24th, 1983.
    [8]Jacobson M J. Sonic fatigue of advanced composite panels in thermal environments. Journal of Aircraft, 1983, 20(3): 282-288.
    [9]Mei C. Prediction of response of aircraft panels subjected to acoustic and thermal loads[R]. Department of Mechanical engineering and Mechanics College of Engineering and Technology Old Dominion University, Norfolk, Virginia, 1992.
    [10]Arnold R R, Vaicaitis R R. Nonlinear response and fatigue of surface panels by the time domain monte carlo approach[R]. WRDC-TR-3081, Anamet Laboratoried Inc, 1992.
    [11]Ng C F, Wentz K R. The prediction and measurement of thermo-acoustic response of plate structures[C], AIAA-90-0988-CP, AIAA/ASME/ASCE/AHS/ASC 31st Structures Structural Dynamics and Materials Conference, Long Beach, 1990.
    [12]Leung E W, Baroth E, Chan C K, et al. Thermal acoustical interaction and flow phenomenon[C]. AIP Conference Proceedings, 1990(197): 58-70.
    [13]Ng C F, Clevenson S A. High-intensity acoustic tests of a thermally stressed plate[J]. Journal of Aircraft, 1991, 28(4): 275-281.
    [14]Lee J. Large-amplitude plate vibration in an elevated thermal environment[R]. WL-TR-92-3049, Flight Dynamics Directorate, Wright Laboratory, Wright-Patterson AFB, OH, 1992.
    [15]Clevenson S A, Daniels E F. Capabilities of the thermal acoustic fatigue apparatus[R]. NASA Technical Memorandum, NASA-TM-104106, 1992.
    [16]Jacobs J H, Gruensfelder C, Hedgecock C E. Thermal-acoustic fatigue of ceramic matrix composite materials[C]. AIAA/ASME/ASCE/AHS/ASC Structure, Structural Dynamics, and Materials Conference, 34th and AIAA/ASME Adaptive Structures Forum, La Jolla, CA, Apr.19-22, 1993.
    [17]Blevins R D, Holehouse I, Wentz K R. Thermoacoustic loads and fatigue of hypersonic vehicle skin panels [J]. Journal of Aircraft, 1993, 30(6): 971-978.
    [18]Rizzi S A. Experimental research activities in dynamic response and sonic fatigue of hypersonic vehicle structures at NASA Langley Research Center [C]. AIAA, Aerospace Sciences Meeting and Exhibit, 31st, Reno, NV, Jan.11-14, 1993.
    [19]Vaicaitis R. Nonlinear response and sonic fatigue of national aerospace space plane surface panels[J]. Journal of Aircraft, 1994, 31(1):10-18.
    [20]Mei C, Moorthy J. Numerical simulation of the nonlinear response of composite plates under combined thermal and acoustic loading[R]. NASA Langley Center, NASA-CR-197426, 1995.
    [21]Murphy K D, Virgin L N, Rizzi S A. Characterizing the dynamic response of a thermally loaded, acoustically excited Plate[J]. Journal of Sound and Vibration, 1996, 196(5):635-658.
    [22]Murphy K D, Virgin L N, Rizzi S A. Experimental snap-through boundaries for acoustically excited, thermally buckled plates[J]. Experimental Mechanics, 1996, 36(4):312-317.
    [23]Chilakamarri K B, Lee J. Thermal-acoustic fatigue damage accumulation model of random snap-throughs[C]. 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, 2000.
    [24]Mei C, Dhainaut J M, Duan B, et al. Nonlinear random response of composite panels in an elevated thermal environment[R]. Old Dominion University, AFRL-VA-WP-TR-2000-3049, 2000.
    [25]Dhainaut J M, Guo X, Mei C, et al. Nonlinear random response of panels in an elevated thermal-acoustic environment[J]. Journal of Aircraft, 2003, 40(4): 683–691.
    [26]Kim K, Yang B, Mignolet M P. Fatigue life prediction of panels subjected to thermo-acoustic loading[C]. AIAA 2003-1776, 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, 7-10 April 2003, Norfolk, Virginia.
    [27]Chen P C, Gao X W, Liu D D. Rapid fatigue life projection for thermal and acoustic loads[R]. AFRL-VA-WP-TR-2003-3063, Zona Technology Inc, 2003.
    [28]Radu A, Yang B, Kim K, et al. Prediction of the dynamic response and fatigue life of panels subjected to thermo-acoustic loading[C]. In Proceedings of the 45th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Palm Springs, California, 19-22 April, 2004.
    [29]Ibrahim H H, Tawfik M, Negm H M. Theroacoustic random response of shape memory alloy hybrid composite plates[J]. Journal of Aircraft, 2008 (3):962-970.
    [30]Miskovish R S, Shah D P. Predicting snap-through of a thin-walled panel due to thermal and acoustic loads[C]. 2010 SIMULIA Customer Conference, May 25-27, 2010, Providence, RI.
    [31]Ibrahim H H, Yoo H H, Tawfk M, et al. Thermo-acoustic random response of temperature-dependent functionally graded material panels [J]. Computational Mechanics, 2010, 46(3): 377-386.
    [32]Tzong G, Liguore S L. Verification studies on hypersonic structure thermal acoustic response and life prediction methods, Proceedings of the 54st AIAA/ ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference ,Boston, Massachusetts, 2013.
    [33]Picelli R, Kim H A. Design optimization of an aircraft structure considering thermal-acoustic loads[C]. AIAA 2018-3883, 2018 Multidisciplinary Analysis and Optimization Conference, June 25-29, 2018, Atlanta, Georgia.
    [34]Kim Y N , Park J S, Go E S, et al. Nonlinear random response analyses of panels considering transverse shear deformations under combined thermal and acoustic loads[J]. Shock and Vibration, Volume 2018, Article ID 9751038, 11 pages.
    [35]Go E S, Kim M G, Kim I G, et al. Fatigue life prediction in frequency domain using thermal-acoustic loading test results of titanium specimen[J]. Journal of Mechanics Sciences Technology, 2020(34): 4015-4024.
    [36]Lee H B, Kim Y N, Choi I J, et al. Nonlinear dynamic responses of shear-deformable composite panels under combined supersonic aerodynamic, thermal, and random acoustic loads[J]. International Journal of Aeronautical and Space Sciences, 2020(21):707-722.
    [37]Go E S, Kim M G, Moon Y S, et al. Experimental study on dynamic behavior of a Titanium specimen using the thermal-acoustic fatigue apparatus[J]. Journal of Korean Society Aeronautical Space Sciences, 2020, 48(2): 127-134.
    [38]吴振强, 任 方, 张 伟, 等. 飞行器结构热噪声试验的研究进展[J]. 导弹与航天运载技术, 2010年第2期: 24-30.
    WU Zhenqiang, REN Fang, ZHANG Wei, et al. Research advances in thermal-acoustic testing of aerocraft structures[J]. Missiles and Space Vehicles, 2010, 2: 24-30.(in Chinese)
    [39]程昊, 张正平, 李海波, 等. 边界条件对壁板结构热噪声试验影响研究[C]. 第十届动力学与控制学术会议, 四川, 成都, 2016: 225-226.
    CHENG Hao, ZHANG Zhengping, LI Haibo, et al. Effects of boundary condition on thermal-acoustic testing of panel structure[C]. The 10th Academic Conference on Dynamics and Control, SiChuan, Chengdu, 2016: 225-226. (in Chinese)
    [40]刘宝瑞, 孔凡金, 程昊, 等. 热噪声试验条件下复合材料舵结构热变形分析[C]. 第三届中国国际复合材料科技大会(CCCM-3), 浙江, 杭州, 2017.
    LIU Baorui, KONG Fanjin, CHENG Hao, et al. Thermal deformation analysis of the composite rudder during thermal-acoustic experiment[C]. The 3rd China International Composite Materials Technology Conference(CCCM-3), Zhejiang, Hangzhou, 2017. (in Chinese)
    [41]吴振强, 任方, 程昊, 等. 陶瓷基复合材料薄壁结构热噪声强度问题研究[C]. 第二十一届全国复合材料学术会议, 内蒙古, 呼和浩特, 2020.
    WU Zhenqiang, REN Fang CHENG Hao, et al. Research on the thermal noise intensity of thin wall structure of ceramic matrix composite material[C]. The 21st National Conference on Composite Materials, Inner Mongolia, Hohht, 2020. (in Chinese)
    [42]张部声, 祝济之, 史剑. 某型钛铝合金航空发动机叶片高温高周振动疲劳实验[J]. 航空动力学报, 2020, 35(6): 1169-1175.
    HANG Busheng, ZHU Jizhi, SHI Jian, et al. Test of vibration fatigue for the TiAl alloy aeroengine blade at high temperature and high cycle[J]. Journal of Aerospace Power, 2020, 35(6): 1169-1175. (in Chinese)
    [43]张正平. 飞行器结构热噪声强度基础[M]. 北京: 科学出版社, 2020.
    ZHANG Zhengping. Fundamentals of Thermal noise intensity in aircraft structure[M]. Beijing: Science Press, 2020. (in Chinese)
    [44]葛森, 曹琦, 邵闯, 等. 一种获得高温声疲劳S-N曲线的新方法[J]. 航空学报, 1997, 18(1): 75-77.
    GE Sen, CAO Qi, SHAO Chuang, et al. New method for obtaining sonic fatigue S-N curves at elevated temperature[J]. Acta Aeronautica et Astronautica, 1997, 18(1): 75-77. (in Chinese)
    [45]葛森, 曹琦, 邵闯, 等.飞机壁板结构的高温声疲劳试验方法[J]. 实验力学, 1997, 12(4): 593-598.
    GE Sen, CAO Qi, SHAO Chuang, et al. Testing method for the sonic fatigue of aircraft panel structure at elevated temperature[J]. Journal of Experimental Mechanics, 1997, 12(4): 593-598. (in Chinese)
    [46]葛森. 飞机壁板高温声疲劳特性分析[D]. 西安: 西北工业大学, 1999.
    GE Sen. Analysis of high temperature acoustic fatigue characteristics of aircraft panels. Xi’an: Northwestern Polytechnical University, 1999. (in Chinese)
    [47]张维, 邹学锋, 万春华. 热环境下薄壁结构随机振动响应分析[J]. 工程与试验, 2017, 57(4): 17-21.
    ZHANG Wei, ZOU Xuefeng, WAN Chunhua. Random vibration response analysis of thin-walled structure in thermal environment[J]. Engineering & Test, 2017, 57(4): 17-21. (in Chinese)
    [48]邹学锋, 郭定文, 燕群, 等. 飞行器结构热/力/振动/噪声多场试验方法与工程实践[C]. 中国航空学会声学分会2020年度线上学术交流会, 北京, 2020: 56.
    ZOU Xuefeng, GUO Dingwen, YAN Qun, et al. Multifield test method and engineering practice for thermal vibration and noise of aircraft structure[C]. 2020 Online Academic Exchange Meeting of the Acoustic Branch of the Chinese Aeronautical Society, Beijing, 2020, 56. (in Chinese)
    [49] 周红卫, 燕群, 邹学锋, 等. 热声联合载荷作用下薄板几何非线性振动分析方法研究[C]. 中国航空学会声学分会2020年度线上学术交流会, 北京, 2020: 51.
    ZHOU Hongwei, YAN Qun,. ZOU Xuefeng, et al. Research on geometric nonlinear vibration analysis method of thin plate under combined thermo-acoustic load[C]. 2020 Online Academic Exchange Meeting of the Acoustic Branch of the Chinese Aeronautical Society, Beijing, 2020, 51. (in Chinese)
    [50]Zhou H W, Xie L, Guo D W, et al. Analysis and experimental validation for a simplified flame tube subjected to combined thermal-acoustic loadings[C]. Proceedings of the 5th China Aeronautical Science and Technology Conference, Zhejiang, Jiaxing, 2021.
    [51]Yao Z M, Huang S Q, Yang J, et al. Experimental research on thermal-acoustic-vibration coupling effects of thin-walled blades[C]. 2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), 6-9 Aug. 2019, Zhangjiajie, China.
    [52]Huang S Q, Yao Z M, Liu S W, et al. Experimental and simulation study on the response characteristics of engine blades under thermo-acoustic-vibration load[J]. Journal of Vibration. Acoustics. 2020, 142(4): 041013.
    [53]张东明, 柳恩杰. 航空发动机涡轮叶片高温振动疲劳试验的新方法[J]. 航空发动机, 2005, 31(1): 18-21.
    ZHANG Dongming, LIU Enjie. A new approach of the vibration endurance test at high temperature for engine turbine blade[J]. Aeroengine, 2005, 31(1): 18-21. (in Chinese)
    [54]Yu W J, Wang X F, Huang X. Dynamic modeling of heat transfer in thermal-acoustic fatigue tests[J]. Aerospace Science Technology, 2017, 71: 675-684.
    [55]魏巍, 袁巍, 武昌耀. 某航空发动机环形燃烧室火焰筒振动与声学特性研究[C]. 第五届空天动力联合会议, 江苏, 南京, 2020: 2285-2291.
    WEI Wei, YUAN Wei, WU Changyao, Research on the vibration and acoustic characteristics of a totoidal combustor flame tube in an aeroengine [C]. The 5th Joint Conference on Aerospace Power, Jiangsu, Nanjing, 2020: 2285-2291. (in Chinese)
    [56]王晓飞, 王圣刚, 麻连净. 一种典型C/SiC构型件的热噪声适应性试验研究[J]. 航天器环境工程 , 2021, 38(1): 46-49.
    WANG Xiaofei, WANG Shenggang, MA Lianjing. Experimental research of thermal-acoustic adaptability of a typically-configured C/SiC specimen[J]. Spacecraft Environment Engineering, 2021, 38(1): 46-49. (in Chinese)
    [57]潘宏刚, 艾延廷, 王成军. 航空发动机燃烧室模型热-声-固耦合试验装置设计研究[J]. 科技信息, 2010, 350(30): 526.
    PAN Honggang, AI Yanting, WANG Chengjun. Design and study of thermal-acoustic-solid coupling test equipment for aeroengine combustion chamber model[J]. Science & Technology Information, 2010, 350(30): 526. (in Chinese)
    [58]郭晓玲. 声激励下的燃烧室模型结构振动响应计算[D]. 沈阳: 沈阳航空航天大学, 2012.
    GUO Xiaoling. Response calculation of the combustion chamber structure vibration under the acoustic excitation [D]. Shenyang: Shenyang Aerospace University, 2012. (in Chinese)
    [59]艾延廷, 王昌旭, 郭晓玲. 燃烧室结构-声耦合特性研究[J]. 中国机械工程, 2014, 25(15): 2008-2012.
    AI Yanting, WANG Changxu, GUO Xiaoling. Vibro-acoustic coupling analysis of combustion chamber[J]. China Mechanical Engineering, 2014, 25(15): 2008-2012. (in Chinese)
    [60]艾延廷, 韩雷, 王昌旭. 燃烧室热-声-结构耦合特性研究[J]. 机械设计与制造, 2014(12): 258-261.
    AI Yanting, HAN Lei, WANG Changxu. Research on the characteristics of thermal-acoustic-structural coupling in a combustion chamber[J]. Machinery Design & Manufacture, 2014(12): 258-261. (in Chinese)
    [61]艾延廷, 韩雷, 许星元, 等. 燃烧室热-声-结构耦合数值研究[J]. 科学技术与工程, 2015, 15(5): 155-161.
    AI Yanting, HAN Lei, XU Xingyuan, et al. Numerical investigation of thermal-acoustic-structural coupling in combustion chamber[J]. Science Technology and Engineering, 2015, 15(5): 155-161. (in Chinese)
    [62]艾延廷, 刘晓振, 王成军, 等. 燃烧室热-声-固耦合数值模拟研究[J]. 科学技术与工程, 2017, 17(6): 301-307.
    AI Yanting, LIU Xiaozhen, WANG Chengjun, et al. Numerical investigation of thermal-acoustic-structural coupling in combustion chamber[J]. Science Technology and Engineering, 2017, 17(6): 301-307. (in Chinese)
    [63]刘晓振. 燃烧室热-声-固耦合数值模拟与试验研究[D]. 沈阳: 沈阳航空航天大学, 2017.
    LIU Xiaozhen. Numerical simulation and experiment investigation of thermal-acoustic-structural coupling in combustion chamber[D]. Shenyang: Shenyang Aerospace University, 2017. (in Chinese)
    [64]臧也. 燃烧室热-声-固耦合研究[D]. 沈阳: 沈阳航空航天大学, 2018.
    ZANG Ye. Study on thermal-acoustic-structural coupling in combustion chamber[D]. Shenyang: Shenyang Aerospace University, 2017. (in Chinese)
    [65]臧也, 田晶, 张凤玲, 等. 燃烧室热-声激励及响应的模拟研究[J]. 沈阳航空航天大学学报, 2018, 35(2): 10-16.
    ZANG Ye, TIAN Jing, ZHANG Fengling, et al. Simulation study on thermoacoustic excitation and response of combustion chamber[J]. Journal of Shenyang Aerospace University, 2018, 35(2): 10-16. (in Chinese)
    [66]Guan P, Ai Y T. Study on thermal-acoustic-structural performance of aeroengine combustor based on coupled-field technology[C]. Proceedings of Global Power and Propulsion Society ISSN-Nr: 2504-4400 Beijing Conference, 2019.
    [67]杨光, 田晶, 艾延廷, 等. 热声激励下燃烧室热声固耦合特性数值研究[J]. 沈阳航空航天大学学报, 2019, 36(3): 14-21.
    YANG Guang, TIAN Jing, AI Yanting, et al. Numerical study on thermoacoustic of combustion chamber subjected to thermoacoustic exciation[J]. Journal of Shenyang Aerospace University. 2019, 36(3): 14-21. (in Chinese)
    [68]张春月, 沙云东, 苏志敏. 航空薄壁结构高温声疲劳应力工程分析方法[J]. 沈阳航空工业学院学报, 2007, 24(1): 9-12.
    ZHANG Chunyue, SHA Yundong, SU Zhimin. An analytical method response for the aircraft thin-wall structure in a combined thermal-acoustic environment[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2007, 24(1): 9-12. (in Chinese)
    [69]蒋娜娜, 沙云东, 鲍冬冬. 碳_碳复合材料薄壁结构在热声载荷作用下的动态响应[J]. 沈阳航空航天大学学报, 2012, 29(3): 16-20.
    JIANG Nana, SHA Yundong, BAO Dongdong. Dynamic response of C/C composite thin-walled structure under thermo-acoustic loadings[J]. Journal of Shenyang Aerospace University, 2012, 29(3): 16-20. (in Chinese)
    [70]鲍冬冬, 沙云东, 蒋娜娜. 复合材料薄壁结构在热声载荷作用下的非线性动态响应特性分析[J]. 沈阳航空航天大学学报, 2013, 30(1): 39-42, 65.
    BAO Dongdong, SHA Yundong, JIANG Nana. Analysis of nonlinear dynamic response of composite thin-walled structure under thermo-acoustic loadings[J]. Journal of Shenyang Aerospace University, 2013, 30(1): 39-42, 65. (in Chinese)
    [71]沙云东, 魏静, 高志军, 等. 热声激励下金属薄壁结构的随机疲劳寿命估算[J]. 振动与冲击, 2013, 32(10): 162-166, 197.
    SHA Yundong, WEI Jing, GAO Zhijun, et al. Random fatigue life prediction of metallic thin-walled structures under thermo-acoustic excitation[J]. Journal of Vibration and Shock, 2013, 32(10): 162-166, 197. (in Chinese)
    [72]沙云东, 魏静, 高志军, 等. 热声载荷作用下薄壁结构的非线性响应特性[J]. 航空学报, 2013, 34(6): 1336-1346.
    SHA Yundong, WEI Jing, GAO Zhijun, et al. Nonlinear response characteristics of thin-walled structures under thermo-acoustic loadings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1336-1346. (in Chinese)
    [73]揭晓博. 热声载荷下复合材料薄壁结构非线性响应特性研究[D]. 沈阳: 沈阳航空航天大学, 2013.
    JIE Xiaobo. Research on nonlinear response characteristics of composite thin-walled structure subjected to thermo-acoustic loading[D]. Shenyang: Shenyang Aerospace University, 2013. (in Chinese)
    [74]朱林. 热声载荷下高温合金薄壁结构动态应力计算与分析[D]. 沈阳: 沈阳航空航天大学, 2013.
    ZHU Lin. Dynamic stress calculation and analysis of high temperature alloy thin-walled structures under thermo-acoustic laods[D]. Shenyang: Shenyang Aerospace University, 2013. (in Chinese)
    [75]蒋娜娜, 魏静, 鲍冬冬, 等. 薄壁结构在热声环境中随机疲劳寿命的估算[J]. 沈阳航空航天大学学报, 2013, 30(1):15-19.
    JIANG Nana, WEI Jing, BAO Dongdong, et al. Fatigue life prediction of thin-walled structure under thermo-acoustic loadings[J]. Journal of Shenyang Aerospace University, 2013, 30(1):15-19. (in Chinese)
    [76]Sha Y D, Wei J, Gao Z J, Zhong H J. Nonlinear response with snapthrough and fatigue life prediction for panels to thermo-acoustic loads. Journal Vibration and Control, 2014, 20(5):679–97.
    [77]沙云东, 朱 林, 栾孝驰, 等. 带有温度梯度的热载荷与声载荷作用下薄板动态响应[J]. 振动与冲击, 2014, 33(18): 102-109.
    SHA Yundong, ZHU Lin, LUAN Xiaochi, Dynamic response of thin plates under thermal loadings with temperature gradient and acoustic loadings[J]. Journal of Vibration and Shock, 2014, 33(18): 102-109. (in Chinese)
    [78]冯飞飞. 热声载荷下复合材料薄壁结构随机疲劳寿命估算[D]. 沈阳: 沈阳航空航天大学, 2014.
    FENG Feifei. Estimation of the random fatigue life of composite thin-walled structures under thermo-acoustic Loadings[D]. Shenyang: Shenyang Aerospace University, 2014. (in Chinese)
    [79]Sha Y D. Zheng X Y. Response analysis of thin-walled structure under non-uniform temperature field and acoustic loads[C]. International Conference on Advances in Mechanical Engineering and Industrial Informatics, 2015.
    [80]冯飞飞, 沙云东, 张国治, 等. 热声载荷下复合材料薄壁结构的随机疲劳寿命估算[J]. 沈阳航空航天大学学报, 2015, 32(4): 24-29, 66.
    FENG Feifei, SHA Yundong, ZHANG Guozhi, et al. Random fatigue life estimation of composite thin-walled structures under thermo-acoustic loadings[J]. Journal of Shenyang Aerospace University, 2015, 32(4): 24-29, 66. (in Chinese)
    [81]张国治, 沙云东, 朱林, 等. 热声载荷作用下薄壁壳结构非线性响应及疲劳寿命估算[J]. 沈阳航空航天大学学报, 2015, 32(3): 18-24,36.
    ZHANG Guozhi, SHA Yun-dong, ZHU Lin, et al. Nonlinear response and fatigue life estimation of thin-shell structures under thermo-acoustic loads[J]. Journal of Shenyang Aerospace University, 2015, 32(3): 18-24,36. (in Chinese)
    [82]朱林, 王晓飞. 热声载荷下高温合金薄壁结构非线性动态响应特性[J]. 航天器环境工程, 2015, 32(3): 252-259.
    ZHU Lin, WANG Xiaofei. Characteristics of nonlinear dynamic response of high temperature alloy thin-walled structures under thermo-acoustic loadings[J]. Spacecraft Environment Engineering, 2015, 32(3): 252-259. (in Chinese)
    [83]Sha Y D, Wang J. Nonlinear vibration response analysis and experimental verification of thin-walled structures to thermal-acoustic excitations[C]. 4th International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2016).
    [84]Sha Y D, Zhu L, Jie X B. Nonlinear random response and fatigue life estimation of curved panels to non-uniform temperature field and acoustic loads. Journal Vibration and Control, 2016, 22(3):896–911.
    [85]沙云东, 王建, 赵奉, 等. 高温环境下薄壁结构声疲劳失效验证技术研究[J]. 装备环境工程, 2016, 13(5): 17-24.
    SHA Yundong, WANG Jian, ZHAO Fengtong, et al. Acoustic fatigue failure verification technology of thin-walled structure under high temperature environment[J]. Equipment Environmental Engineering, 2016, 13(5): 17-24. (in Chinese)
    [86]Sha Y D, Wang J. Nonlinear response analysis and experimental verification for thin-walled plates to thermal-acoustic loads. Chinese Journal of Aeronautics, 2017, 30(6):1919-1930.
    [87]王建, 沙云东. 薄壁结构在热声载荷下的疲劳寿命分析与试验验证[J]. 燃气涡轮试验与研究, 2017, 30(3): 5, 11-15.
    WANG Jian, SHA Yundong. Fatigue life analysis and experimental verification of thin-walled structures under thermal-acoustic loads[J]. Gas Turbine Experiment and Research, 2017, 30(3): 5, 11-15. (in Chinese)
    [88]王建, 沙云东. 热声环境下薄壁加筋结构的振动响应研究与疲劳寿命分析[J]. 科学技术与工程, 2017, 17(8): 71-79.
    WANG Jian, SHA Yundong. Vibration response research and fatigue life analysis of reinforced panels in thermal-acoustic environment[J]. Science Technology and Engineering, 2017, 17(8): 71-79. (in Chinese)
    [89]沙云东, 王建, 赵奉同, 等. 热声激励下高温合金薄壁结构振动响应试验验证与疲劳寿命预测[J]. 推进技术, 2017, 38(8): 1847-1856.
    SHA Yundong, WANG Jian, ZHAO Fengtong, et al. Vibration responses experimental verification and fatigue life prediction of superalloy thin-walled structures under thermal-acoustic excitations[J]. Journal of Propulsion Technology, 2017, 38(8): 1847-1856. (in Chinese)
    [90]白文君, 沙云东, 李华山, 等. 热声载荷下C/SiC层合薄板动态响应分析及寿命预测[J]. 2017, 36(10): 76-83.
    BAI Wenjun, SHA Yundong, LI Huashan, et al. Dynamic response analysis and fatigue life prediction of C/SiC thin laminated plate under thermal-acoustic loadings[J]. 2017, 36(10): 76-83. (in Chinese)
    [91]王建, 沙云东, 赵奉同, 等. 热声载荷下薄壁开孔结构振动响应与寿命预估[J]. 航空发动机, 2017, 43(3):24-31.
    WANG Jian, SHA Yundong, ZHAO Fengtong, et al. Vibration response analysis and fatigue life prediction of thin-walled structures with opening under thermo-acoustic loads[J]. Aeroengine, 2017, 43(3):24-31. (in Chinese)
    [92]沙云东, 王建, 赵奉同, 等. 热声载荷下薄壁结构振动响应试验验证与疲劳分析[J]. 航空动力学报, 2017, 32(11): 2659-2671.
    SHA Yundong, WANG Jian, ZHAO Fengtong, et al. Vibration response experimental verification and fatigue analysis of thin-walled structures to thermal-acoustic loads[J]. Journal of Aerospace Power, 2017, 32(11): 2659-2671. (in Chinese)
    [93]沙云东, 王建, 骆丽, 等. 热声载荷作用下金属薄壁结构的振动响应与试验验证[J]. 振动与冲击, 2017, 36(20): 218-224, 232.
    SHA Yundongm, WANG Jian, LUO Li, et al. Vibration responses analysis and experimental verification of metallic thin-walled structures to thermal-acoustic loadings[J]. Journal of Vibration and Shock, 2017, 36(20): 218-224, 232. (in Chinese)
    [94]栾孝驰, 胡翼飞, 沙云东, 等. 高温环境下薄壁结构声激励响应及疲劳分析与试验验证[J]. 航空动力学报, 2018, 33(11): 2561-2572.
    LUAN Xiaochi, HU Yifei, SHA Yundong, et al. Acoustic excitation response and fatigue life analysis and test verification of thin-walled structure under high temperature environment[J]. Journal of Aerospace Power, 2018, 33(11): 2561-2572. (in Chinese)
    [95]沙云东, 胡翼飞,胡增辉. 薄壁结构高温随机振动疲劳分析方法有效性验证[J]. 推进技术, 2018, 39(6): 1386-1395.
    SHA Yundong, HU Yifei, HU Zenghui. Random vibration fatigue analysis method valid verification of thin-walled structure under high temperature environment[J]. Journal of Propulsion Technology, 2018, 39(6): 1386-1395. (in Chinese)
    [96]王建, 沙云东, 杜英杰, 等. 热声复合环境下薄壁锥壳结构响应计算与疲劳寿命预估[J]. 装备环境工程, 2018, 15(12): 91-97.
    WANG Jian, SHA Yundong, DU Yingjie, et al. Response calculation and fatigue life prediction of thin-walled conical shell structures under thermal-acoustic complex environment[J]. Equipment Environmental Engineering, 2018, 15(12): 91-97. (in Chinese)
    [97]栾孝驰, 沙云东, 胡翼飞. 稳态高温环境下薄壁结构声疲劳分析与试验验证[J]. 战术导弹技术, 2018(6): 35-43.
    Luan Xiaochi, Sha Yundong, Hu Yifei. Thin-walled panel structure acoustic fatigue analysis method experimental verification under steady state high temperature environment[J]. Tactical Missile Technology, 2018(6): 35-43. (in Chinese)
    [98]沙云东, 朱付磊, 赵奉同, 等. 热声载荷下薄壁板行波管疲劳分析与试验研究[J]. 推进技术, 2019, 40(8): 1876-1886.
    SHA Yundong, ZHU Fulei, ZHAO Fengtong, et al. Fatigue analysis and experimental research for thin-walled plates under thermoacoustic loading in traveling wave tube[J]. Journal of Propulsion Technology, 2019, 40(8): 1876-1886. (in Chinese)
    [99]Wang J, Zhao F T, Sha Y D, et al. Fatigue life research and experimental verification of superalloy thin-walled structures subjected to thermal-acoustic loads[J]. Chinese Journal of Aeronautics, 2020, 33(2): 598-608.
    [100]沙云东, 艾思泽, 赵奉, 等. 高速热流下薄壁结构声振响应分析及寿命预估[J]. 航空学报, 2020, 41(2): 223327.
    SHA Yundong, AI Size, ZHAO Fengtong, et al. Vibro-acoustic response analysis and fatigue life prediction of thin-walled structures with high speed heat flux[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 223327. (in Chinese)
    [101]张家铭. 航空薄壁结构非线性动力学分析与疲劳寿命预估[D]. 沈阳:沈阳航空航天大学, 2020.
    ZHANG Jiaming. Nonlinear dynamic response analysis and fatigue life prediction of aeronautical thin-walled structures[D]. Shenyang: Shenyang Aerospace University, 2020. (in Chinese)
    [102]沙云东, 艾思泽, 张家铭, 等. 热流环境下薄壁结构随机振动响应计算与疲劳分析[J]. 航空动力学报, 2020, 35(7): 1402-1412.
    SHA Yundong, AI Size, ZHANG Jiaming, et al. Random vibration response calculation and fatigue analysis of thin-walled structures under heat flux environment[J]. Journal of Aerospace Power, 2020, 35(7): 1402-1412. (in Chinese)
    [103]栾孝驰, 胡翼飞, 沙云东, 等. 薄壁结构在热-声-流动载荷作用下疲劳寿命预估[J]. 机械设计与制造, 2020, 2: 279-283, 287.
    LUAN Xiaochi, HU Yifei, SHA Yundong, et al. Fatigue life prediction of thin-walled structures under thermal-acoustic-fluid loads[J]. Machinery Design & Manufacture, 2020, 2: 279-283, 287. (in Chinese)
    [104]张家铭, 沙云东, 艾思泽. 高温声载荷下火焰筒结构动力学响应特性分析[J]. 机械制造与自动化, 2020, 49(6): 101-105.
    ZHANG Jiaming, SHA Yundong, AI Size. Analysis of dynamic response characteristics of flame tube structures under acoustic loading and high temperature[J]. Machine Building & Automation, 2020, 49(6): 101-105. (in Chinese)
    [105]沙云东, 杨延泽, 唐晓宁. 高温升环境下热端部件薄壁连接结构声疲劳强度分析与试验验证[J]. 推进技术, 2022, 43(11): 210784.
    SHA Yundong, YANG Yanze, TANG Xiaoning. Acoustic fatigue strength analysis and experimental verification of thin-walled connection structures with hot sections under high temperature rise environment[J]. Journal of Propulsion Technology, 2022, 43(11): 210784. (in Chinese)
    [106]王晨. 热效应对高频声振响应与疲劳寿命影响研究[D]. 合肥: 中国科学技术大学, 2017.
    WANG Chen. Research on the influence of thermal effect on the high-frequency structural-acoustic response and fatigue life[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese)
    [107]王晨, 陈海波, 王用岩, 等. 温度效应对铝合金壁板高频声振疲劳寿命的影响研究[J]. 应用力学学报, 2018, 35(4): 701-708.
    WANG Chen, CHEN Haibo, WANG Yongyan, et al. Thermal effect on the fatigue life of aluminum panel under high-frequency acoustic excitation[J]. Chinese Journal of Applied Mechanics, 2018, 35(4): 701-708. (in Chinese)
    [108]王晨, 燕群, 陈海波. 温度效应对壁板动响应及疲劳寿命影响研究[J]. 计算机仿真, 2019, 36(6): 68-72.
    WANG Chen, YAN Qun, CHEN Haibo, et al. Influence of temperature effect on dynamic response and fatigue life of panel[J]. Computer Simulation, 2019, 36(6): 68-72. (in Chinese)
    [109]He E M, Liu F, Hu Y Q, et al. Nonlinear vibration response analysis and fatigue life prediction of a thin-walled structure under thermal-acoustic loading[J]. Journal of Vibration and Shock, 2013, 32(24):135-139.
    [110]贺尔铭, 胡亚琪, 张钊, 等. FGM板三维层合模型及热-噪声载荷下的动态响应研究[J]. 航空学报, 2013, 34(6): 1293-1300.
    HE Erming, HU Yaqi, ZHANG Zhao, et al. 3-D laminated model and dynamic response analysis of FGM panels in thermal-acoustic environments[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1293-1300. (in Chinese)
    [111]贺尔铭, 刘峰, 胡亚琪, 等. 热声载荷下薄壁结构非线性振动响应分析及疲劳寿命预测[J]. 振动与冲击, 2013, 32(24): 135-139, 168.
    HE Erming, LIU Feng, HU Yaqi, et al. Nonlinear vibration response analysis and fatigue life prediction of a thin-walled structure under thermal-acoustic loading[J]. Journal of Vibration and Shock, 2013, 32(24): 135-139, 168. (in Chinese)
    [112]贺尔铭, 陈兵, 张忠, 等. 考虑后屈曲的2D C/SiC复合材料板热振动分析[J]. 强度与环境, 2016, 43(4): 49-56.
    HE Erming, CHEN Bing, ZHANG Zhong, et al. Modal analysis of 2D C/SiC composite panels in thermal environment considering post buckling[J]. Structure & Environment Engineering, 2016, 43(4): 49-56. (in Chinese)
    [113]贺尔铭, 陈兵, 曹存显. 高温环境下二维正交编织C/SiC复合材料壁板振动模态演化[J]. 航空学报, 2017, 38(7): 220553.
    HE Erming, CHEN Bing, CAO Cunxian. Vibration mode evolution of 2D woven C/SiC composite panels in hot environment[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 220553. (in Chinese)
    [114]黄俊涛. 弹性支承复合材料壁板热振研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
    HUANG Juntao. Study on thermal vibration of composite thin plate with elastic support[D]. Harbin: Harbin Institute Of Technology, 2017. (in Chinese)
    [115]彭佳琦. 热声载荷下螺栓连接复合材料壁板非线性振动响应分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.
    PENG Jiaqi. Nonlinear vibration response analysis of bolted composite plate under thermo acoustic loading[D]. Harbin: Harbin Institute Of Technology, 2018. (in Chinese)
    [116]石乃文. 高速飞行器热防护结构振动疲劳分析[D]. 哈尔滨:哈尔滨工业大学, 2019.
    SHI Naiwen. Vibration fatigue analysis of thermal protection structure of high-speed aircraft[D]. Harbin: Harbin Institute Of Technology, 2019. (in Chinese)
    [117]Wang Y L, Cao D Q, Peng J Q, et al. Nonlinear random responses and fatigue prediction of elastically restrained laminated composite panels in thermo-acoustic environments[J]. Composite Structures, 2019, 229(1): 111391.
    [118]崔晓航. 涡轮叶片热强度及疲劳寿命分析[D]. 哈尔滨: 哈尔滨工程大学, 2017.
    CUI Xiaohang. Research on thermal intensity and fatigue life of turbine blades[D]. Harbin: Harbin Engineering University, 2017. (in Chinese)
    [119]林叶丰. 热噪声载荷作用下薄壁结构振动特性分析[D]. 哈尔滨: 哈尔滨工程大学, 2019.
    LIN Yefeng. Analysis of vibration characteristics of thin-walled structures under thermal noise loading[D]. Harbin: Harbin Engineering University, 2019. (in Chinese)
    [120]吕冰洋. 热环境下热防护结构动响应行为研究[D]. 北京: 北京理工大学, 2015.
    LV Bingyang. Dynamic response behavior of thermal protection structure in thermal environment[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese)
    [121]任健. 热环境下薄板随机动响应统计行为研究及疲劳寿命预测[D]. 北京: 北京理工大学, 2017.
    REN Jian. Statistical behavior and fatigue life prediction of random dynamic response of thin plate under thermal environment[D]. Beijing: Beijing Institute of Technology, 2017. (in Chinese)
    [122]Zhao X J, Chen H B, Lei J M, et al. A scaling procedure for measuring thermal structural vibration generated by wall pressure fluctuation[J]. Chinese Journal of Aeronautics, 2019, 32(4): 815–825
    [123]周亚东, 吴邵庆, 李彦斌, 等. 变温条件下热结构的声疲劳寿命评估[J]. 工程力学, 2015, 32(10): 220-225.
    ZHOU Yadong, WU Shaoqing, LI Yanbin, et al. Acoustic fatigue life assessment of hot structures under variable temperature conditions[J]. Engineering Mechanics, 2015, 32(10): 220-225. (in Chinese)
    [124]周亚东. 热声振环境下复合材料薄壁结构疲劳评估问题研究[D]. 南京: 东南大学, 2018.
    ZHOU Yadong. Fatigue evaluation of thin-walled composite structures subjected to thermo-acoustic-vibro loads[D]. Nanjing: Southeast University, 2018. (in Chinese)
    [125]王佳莹. 考虑温度影响下结构振动疲劳寿命估算[D]. 南昌: 南昌航空大学, 2012.
    WANG Jiaying. Estimation of structural vibration fatigue life with temperature involved[D]. Nanchang: Nanchang Hangkong University, 2012. (in Chinese)
    [126]刘文光, 严铖, 郭隆清, 等. 热环境下飞行器壁板的振动疲劳分析[J]. 失效分析与预防, 2014, 9(1): 1-5.
    LIU Wenguang, YAN Chen, GUO Longqing, et al. Analysis on vibration fatigue of aircraft panel under thermal environment[J]. Failure Analysis and Prevention, 2014, 9(1): 1-5. (in Chinese)
    [127]严铖. 热环境下FGM壳的振动特性及裂纹扩展分析[D]. 南昌: 南昌航空大学, 2015.
    YAN Chen. Analysis on vibration characteristics and crack growth of FGM shell under thermal environment[D]. Nanchang: Nanchang Hangkong University, 2015. (in Chinese)
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

zhangyujie, sunrenjun, libin. Research Advances in Thermal-Acoustic Fatigue Problems of Aerocraft Structures[J]. Advances in Aeronautical Science and Engineering,2024,15(5):1-15

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 18,2024
  • Revised:May 20,2024
  • Adopted:June 05,2024
  • Online: September 14,2024
Article QR Code