文章编号:1674-8190(2024)01-118-09

某型无人机起落架放下阶段缓冲器气液 流动特性研究

罗杰¹,孙继勇²,陈超²,姜义尧¹,程晓宇¹,蒋炳炎¹ (1.中南大学高性能复杂制造国家重点实验室,长沙410083) (2.中航飞机起落架有限责任公司,长沙410200)

摘 要:在设计飞机油气混合型式的可收放起落架时,应充分考虑其内腔之间的介质流动特性。以某型无人 机起落架缓冲器阻尼孔径、充油量为研究对象,采用单因素实验法对各因素引起的缓冲器内部气液流动变化进 行分析,通过Fluent软件对放下阶段不同阻尼孔径、充油量下的缓冲器气液特性进行仿真计算。结果表明:起 落架放下过程缓冲器阻尼孔油液流量只与孔径大小有关,不受缓冲器充油量影响;在该型号无人机要求的 637 mL充油量下,缓冲器阻尼孔孔径应大于6 mm;对于其他型号起落架缓冲器,当确定了充油量后,应将满足 放下阶段缓冲器气液充填作为缓冲器阻尼孔设计标准之一。

关键词:缓冲器;阻尼孔径;气液充填时间;充油量;气液交换

中图分类号:V226⁺.2 DOI: 10.16615/j.cnki.1674-8190.2024.01.13 文献标识码:A

Study on gas-liquid flow characteristics of buffers in the landing gear of a certain type of UAV landing gear lowering stage

LUO Jie¹, SUN Jiyong², CHEN Chao², JIANG Yiyao¹, CHENG Xiaoyu¹, JIANG Bingyan¹

(1. State Key Laboratory of High-Performance Complex Manufacturing,

Central South University, Changsha 410083, China)

(2. AVIC Landing-gear Advanced Manufacturing Co., Changsha 410200, China)

Abstract: When designing the retractable landing gear of an aircraft oil-gas mixed type, the medium flow characteristics between the inner cavities should be fully considered. The damping aperture and fuel filling amount of a certain UAV landing gear buffer is taken as the research object, and the single factor experimental method is used to analyze the changes of gas-liquid flow inside the buffer caused by each factor. The gas-liquid characteristics of the buffer under different damping apertures and oil filling amounts in the lowering stage are simulated and calculated by Fluent software. The results show that the damping hole oil flow during the landing gear lowering process is only related to the size of the pore size, not affected by the oil filling amount of the buffer. Under the 637 mL oil filling required by this type of UAV, the buffer damping aperture should be greater than 6 mm. For other types of landing gear buffers, when the oil filling amount is determined, the gas-liquid filling of the buffer that meets the lowering stage should be used as one of the buffer damping hole design criteria.

Key words: buffer; damping pore size; gas-liquid filling time; oil filling capacity; gas-liquid exchange

收稿日期: 2022-10-28; 修回日期: 2023-03-25

通信作者: 蒋炳炎(1963-), 男, 博士, 教授。 E-mail: jby@csu. edu. cn

引用格式:罗杰,孙继勇,陈超,等.某型无人机起落架放下阶段缓冲器气液流动特性研究[J]. 航空工程进展, 2024, 15(1): 118-126.
 LUO Jie, SUN Jiyong, CHEN Chao, et al. Study on gas-liquid flow characteristics of buffers in the landing gear of a certain type of UAV landing gear lowering stage[J]. Advances in Aeronautical Science and Engineering, 2024, 15(1): 118-126. (in Chinese)

0 引 言

飞机着陆前其起落架缓冲支柱一般为垂直放 下状态,油气式缓冲支柱内部介质的理想状态分 为上下两腔:上部为充填氮气腔,下部为充填液压 油腔,在起落架收上状态时缓冲器支柱处于水平 状态,上部的充填氮气可能进入下部油腔,下部油 液可能进入上部气腔。某小型飞机着陆前起落架 放下,缓冲器在放下瞬间上部存在未来得及进入 下腔的油液,下腔存在氮气需要充填到上腔,这就 要求缓冲支柱内部介质在起落架放下后能快速流 动。《飞机起落架系统通用规范》第3.2.2.2条中e) 规定:起落架应在2min之内恢复至放下的理想状 态^[1]。针对起落架的研究目前集中在着陆阶段,主 要研究其缓冲器缓冲性能^[2]、起落架摆振^[3-4]、结构 件疲劳问题^[5],对于起落架放下到着陆前阶段的研 究较少,因此需要对起落架放下过程中气液充填 时间进行研究。

针对起落架油气缓冲器参数优化与结构设计研究, Milwitzky等^[6]根据流体力学的相关理论确定了油液阻尼力基本计算方法; Bharath等^[7]、Ran F等^[8]利用计算流体动力学方法研究了油气缓冲器阻尼孔参数对缓冲器性能的影响; Ahmad等^[9]提出了一种起落架油气缓冲器的综合设计方法。随着仿真软件在起落架各种工况下的应用, Jiao F^[10]通过数值模拟结合起落架落震实验从阻尼孔参数^[11]、温度^[12-13]、流速^[14]、压力^[15]、气蚀^[16]等多方面考虑, 研究了压缩阶段下的缓冲器阻尼特性。

关于孔口处出流特性的研究,金进生等^[17]、 Dunham^[18]通过对伯努利方程和流体运动连续性 方程得出的流速表达式取二级近似,建立了小孔 流量理论计算公式;WuD等^[19]、Ahmed等^[20]推导 了不同类型小孔的流量系数计算公式;黄育红 等^[21]对小孔流速实验涉及的容器排水问题进行了 系统的理论和实验研究,推导了圆柱形容器排水 时间的计算公式,并利用试验结果计算得到流量 系数值。

对于气液两相交换流动,Nicklin^[22]、Stenning^[23]研究了不同涌升管参数下气泡提升装置的 性能;Rai^[24]利用 openfoam 软件对不同孔径孔口设 置气体入口,研究了底部小孔进气过程中,容器内 部气泡的形成与破裂引起的气泡行为和自由液面 变形,并研究了孔口直径、孔口数量和孔口间距三 个系统参数对气泡动力学和气液界面变形的影响;Solbrig等^[25]通过对上腔封闭,孔口连通大气的内径为133 mm的圆柱形容器进行了试验,分别测得在上腔封闭下孔径为7.94 mm小孔处的流速、流量、上腔压力变化以及气液交换频率,并与上腔开放容器下的小孔流量进行对比。对于封闭空间以及开放空间下孔口的出流,目前研究主要定性分析其流量变化,并且针对的是单一孔径、液体介质主要为水,未考虑下腔封闭时的上下腔气体压力差变化,因此需要定量研究不同孔径、缓冲器上下腔气液分布对起落架收放过程缓冲器气液流动特性的影响。

目前针对起落架缓冲器的研究主要集中在落 震工况下,关于孔口处气液两相流动研究多集中 在涌升管内气液特性,或是针对开放或半封闭下 的容器气液出流特性,起落架在放下瞬态到放下 稳态这一过程为全封闭空间,对于该工况下气液 交换流动特性鲜有研究。

本文通过对某型无人机起落架放下过程阻尼 孔油液流量以及充填时间公式的理论推导,采用 Fluent联合仿真,模拟起落架放下瞬间到气液填充 完过程,分析不同阻尼孔孔径、充填油量下的阻尼 孔流量、上下腔气体压力差和气液充填时间,确定 某型无人机缓冲器阻尼孔的最小孔径。

某型无人机起落架放下阶段孔口 出流公式推导

1.1 某型无人机起落架油气式缓冲器模型

起落架由收上状态到放下状态过程油气分布 变化如图1所示,从放下瞬态到稳定状态缓冲器内 部油气会有一个充填过程,要求解此过程的时间 首先需要通过计算空中收上状态油液分布得到起 落架放下瞬态上下腔油液分布量。

Fig. 1 Oil-liquid distribution in the retracted state of the landing gear

简化后的缓冲器主要由活塞杆、外筒、柱塞三 部分组成,某型无人机起落架缓冲器放下瞬间结 构如图2所示,参数如表1所示。

图 2 某型无人机缓冲器放下瞬间结构示意图 Fig. 2 Schematic diagram of the structure of a certain type of drone buffer dropping instantly

表1 某型无人机缓冲器参数 Table 1 Parameters of a certain type of drone buffer

参数	数值	参数	数值
外筒内径D/mm	72	柱塞长度L ₃ /mm	217
活塞内径 D_1/mm	50	充油量 V_1/mL	637
活塞外径 D_2/mm	60	充气压力 P/MPa	2
上下支撑初始长度L/mm	75	环境温度 T/°C	25
外筒长度 L_1 /mm	311	阻尼孔直径 d/mm	6
活塞长度 L_2/mm	117	阻尼孔长度 l/mm	2

1.2 阻尼孔孔口出流公式

1.2.1 阻尼孔流量公式推导

飞机起落架缓冲器中定阻尼节流装置以圆柱 孔形式为主,阻尼孔流量的流动特性与流体力学 中的孔口出流情况十分类似。缓冲器油孔根据油 孔的长径比(*l/d*)可以分成三种:薄壁孔*l/d*《2,长 孔*l/d*》4,厚壁孔2<*l/d*《4。通常无人机缓冲器 主油孔都属于薄壁孔类型,因此本文主要对长径 比在2以内的薄壁孔进行研究。通过定常伯努利 方程以及流体连续性方程联立求解阻尼孔流量公 式,孔口出流示意图如图3所示。

图 3 定阻尼孔口出流示意图 Fig. 3 Schematic diagram of the outflow of the fixed damping orifice

$$\frac{v_1^2}{2g} + \frac{p_1}{\rho g} + h = \frac{v_2^2}{2g} + \zeta \frac{v_2^2}{2g} + \frac{p_2}{\rho g} \qquad (1)$$

$$A_1 v_1 = A_2 v_2 \tag{2}$$

$$Q = C_c C_v A_v \sqrt{2gh + 2\Delta p/\rho} = C_d A_v \sqrt{2gh + 2\Delta p/\rho}$$
(3)

式中: v_1 , v_2 分别为自由液面以及孔口油液流速; ρ 为油液密度;h为液面与孔口的高度差; ζ 为孔口出 流处的阻力系数; A_1 为上腔油液截面面积; A_2 为收 缩截面面积; p_1 为上腔气压; p_2 为下腔孔口气压; Δp 为 p_1 与 p_2 之间的压力差; C_v 为流速系数,其物 理意义为收缩截面处的真实速度与理论速度之 比; C_v 为孔口缩流效应引入收缩系数,是收缩截面 面积与孔口面积之比; A_v 为孔口截面面积; C_d 为流 量系数。关于流量系数的确定,由于本文研究的 缓冲器油液充填流速较低,因此选择的低雷诺数 阶段流量系数经验公式^[20]如式(4)~式(9)所示。

$$\begin{cases} C_{d} = \phi_{1} R e^{0.489} & (0 < Re \leq 10) \\ C_{d} = \delta_{1} R e^{\delta_{2}} + \delta_{3} & (10 < Re < 250) \end{cases}$$
(4)
$$\phi_{1} = (0.039\beta^{2} - 0.011\beta - 0.063)T + \\ (-0.123\beta^{2} + 0.056\beta + 0.156) & (5) \\ \delta_{1} = (1.033\beta^{2} - 1.169\beta + 0.453)T^{2} + \\ (-1.164\beta^{2} + 1.497\beta - 0.775)T + \\ (-0.103\beta^{2} - 0.232\beta + 0.525) & (6) \\ \delta_{2} = (-0.88\beta^{2} + 0.902\beta - 0.294)T^{2} + \\ (1.029\beta^{2} - 1.130\beta + 0.486)T + \\ (0.157\beta^{2} + 0.083\beta + 0.045) & (7) \\ \delta_{3} = -3.36 \times 10^{-6} (Re - 32.4)(Re - 184.8) \end{cases}$$

(8)

$$Re = \frac{v_1 d}{\mu} \tag{9}$$

式中:*Re*为阻尼孔雷诺数;β为阻尼孔径与外筒内 径之比;T为阻尼孔长径比。

1.2.2 油液充填时间公式推导

对飞机起落架在空中收上状态油液分布建立 坐标系如图4所示,求解积分方程式(10)得到空中 收上状态上下腔油液的分布量,通过空中收上状 态油液分布计算得到起落架放下瞬间油液分布以 及需要充填油液量如式(11)~式(16)所示,起落架 放下瞬间油液分布数值如表2所示。

$$(L_1 - L) \times 2 \int_{-D/2}^{k} \sqrt{(D/2)^2 - y^2} \, \mathrm{d}y + L_2 \times 2 \int_{-D/2}^{k} \sqrt{(D/2)^2 - y^2} \, \mathrm{d}y = V. \quad (10)$$

$$V_2 = (L_1 - L) \times 2 \int_{-D/2}^{k} \sqrt{(D/2)^2 - y^2} \, \mathrm{d}y +$$

$$(L - L_1 + L_3) \times 2 \int_{-D_1/2}^k \sqrt{(D_1/2)^2 - y^2} \, \mathrm{d}y$$
 (11)

$$V_3 = V_1 - V_2 \tag{12}$$

$$V_4 = (L_1 + L_2 - L_3 - L) \times \pi (D_1/2)^2 - V_3$$
(13)

$$h_1 = \frac{V_2}{\pi (D/2)^2} \tag{14}$$

$$h_n = \frac{V_4}{\pi (D/2)^2} \tag{15}$$

$$h_2 = h_1 - h_2 \tag{16}$$

表2 某型无人机起落架放下状态油液分布参数

 Table 2
 Oil distribution parameters of a certain type of

UAV landing gear drop state

参数	数值
上腔油液量 V_2/mL	471
上腔初始液面高度 h ₁ /mm	115.66
充填完成后上腔液面高度 h ₂ /mm	97.24
下腔油液量V ₃ /mL	166
下腔所需充填油液量 V ₄ /mL	75

根据公式(1)与公式(2),考虑到h=h(t)、 $v_1=$

- dh/dt,求解得到油液高度与时间关系式如式(18) 所示,选取不同孔径的小孔,通过小孔流速公式预 估雷诺数范围计算出不同孔径油液充填时间。

$$\int_{0}^{t} dt = \int_{h_{1}}^{h_{2}} \frac{-A_{1}dh}{C_{d}A_{0}\sqrt{2gh + 2(\Delta p/\rho)}}$$
(17)

$$t = \frac{A_1}{C_d A_0} \int_{h_2}^{h_1} \frac{\mathrm{d}h}{\sqrt{2gh + 2(\Delta p/\rho)}}$$
(18)

式(18)虽然考虑了在封闭工况下缓冲器上下 腔的压力差,但由于在缓冲器放下过程会伴随着 阻尼孔内的气液交换,因此需要引入气液交换系 数*C*来表征气液交换对于充填时间的影响。引入 气液交换系数*C*后油液充填时间公式如式(19) 所示。

$$t = \frac{CA_1}{C_d A_0} \int_{h_2}^{h_1} \frac{\mathrm{d}h}{\sqrt{2gh + 2(\Delta p/\rho)}}$$
(19)

2 起落架放下阶段缓冲器仿真模型 的建立

2.1 模型建立以及网格划分

本文研究的无人机起落架缓冲器模型中的流 场属于轴对称模型,只需建立一个轴对称截面。 这种建模方式在保证结果可靠的同时,可以大幅 减少计算机的计算量,起落架放下阶段缓冲器仿 真模型示意图如图5所示。使用CATIA建立起落 架放下初始时刻缓冲器流场的二维几何模型,其 主要参数如表1所示。

将建好的模型导入 Ansys Mesh 中绘制网格,

定义对称轴(axis)以及壁面(wall)边界条件,缓冲器流域网格如图6所示。

- 图5 起落架放下阶段缓冲器仿真模型示意图
- Fig. 5 Schematic diagram of the buffer simulation model of the landing gear drop stage

2.2 求解器参数设置

将网格模型导入Fluent中,求解器参数设置如下:

1) 起落架放下阶段缓冲器内部油液主要受重 力作用,因此先在x轴方向设置重力加速度 $g=-9.8 \text{ m/s}^2$ 。

2)在封闭空间下阻尼孔会有气液两相的交换,VOF模型是一种在固定的欧拉网格下的表面跟踪方法,本文中15号航空液压油与氮气之间的交界面互不相融,因此选定VOF气液两相模型。在VOF模型中,不同流体组分共用一套动量方程,计算时在全流场的每个计算单元内,记录下各流体组分所占有的体积率。流动模型选择标准 k-ε 模型^[26]。

3) 建立流体参数模型,本文无人机缓冲器采 用油液类型为15号航空液压油,其在25°C时的运 动黏度为23.547 mm²/s,密度设为839.3 kg/m³, 对于气体参数,直接从Fluent材料库中选取氮气作 为气相。

4)油气两相分布初始化,根据表2计算得到的放下瞬间上下腔油液分布结果,在Fluent中设置 初始时刻油液分布如图7所示。

Fig. 7 Volume fraction of oil contour at the initial moment

5) 在阻尼孔处设定流量监测面,分析阻尼孔 流量变化规律。

2.3 仿真试验设计

在起落架放下过程中,上下腔气体压力差、阻 尼孔面积与长径比都会影响油液充填时间。选取 不同阻尼孔径参数(充填油液量为637 mL)研究油 气交换对油液充填时间影响,如表3所示。选取不 同充填油量(d=10 mm, l=2 mm)研究油液分布 对上下腔气体压力差的影响如表4所示。

表3 不同阻尼孔径参数取值

Table 3	Values for differen	nt diameter of da	amping holes
编号	孔径 d/mm	孔长 <i>l</i> /mm	长径比
1	10	2	0.20
2	8	2	0.25
3	6	2	0.33
4	4	2	0.50

	表4	不同充油量取值
Table 4	Val	ues for different oil fillings

	1 4510 1 1 4	nuce for annorene of	
编号	充油量 $V_1/{ m mL}$	上腔初始高度 h_1/mm	下腔初始高度 h _m /mm
1	300	61.64	24.97
2	400	79.37	39.14
3	500	96.93	53.66
4	600	114	68.30
5	700	131.96	82.86

第1期

3 仿真结果及分析

3.1 起落架放下阶段流场结果分析

1) 阻尼孔流量变化

以 d=6 mm、l=2 mm 小孔参数,充油量为 637 mL缓冲器仿真结果得到起落架放下过程缓冲 器阻尼孔流量随时间变化关系曲线,如图 8 所示, 可以看出:在油液充填缓冲器下腔过程中,阻尼孔 流量 Q 在 0~0.003 5 L/s 区间内呈现周期性波动 趋势。这是由于在阻尼孔进行的气液交换现象, 当油液向下充填一部分后,下腔氮气会通过阻尼 孔进入上腔,形成"油液充填一气体充填一油液充 填"交替进行的现象,缓冲器放下阶段气液两相变 化如图 9 所示。

图 9 起落架放下阶段油液体积分数云图 Fig. 9 Volume fraction of oil contour during the landing gear lowering stage

2) 流量系数确定

由式(4)~式(9)可知流量系数由阻尼孔雷诺数、长径比等参数确定,以*d*=6 mm、*l*=2 mm阻尼孔仿真结果为例,计算其流量系数。

缓冲器阻尼孔处流量速度如图 10 所示,通过 油液在阻尼孔处平均速度求解得到阻尼孔雷诺数 *Re*=4.81,流量系数*C*_d=0.30。

Fig. 10 Velocity of damping holes

3.2 不同充油量缓冲器上下腔压力差

根据 d=10 mm、l=2 mm 阻尼孔参数 300~700 mL共5组不同充油量仿真结果,得到不同充油量下油液充填时间以及上下腔压力差,如表5 所示。

表5 不同充油量上下腔压力差

Oil filling time with different oil filling volumes Table 5 初始时刻上 充填过程上 充填油量 平均流量 充填时 下腔压力差 下腔平均压 $Q/(L \cdot s^{-1})$ V_1/mL 间 t_2/s $\Delta P/\mathrm{Pa}$ 力差 △P/Pa 300 500 310 0.0027 62.5 400 0.0026 648 480 53.4500 790 655 0.002543.2 600 920 0.0026 815 35.1 700 1 000 960 0.0027 26.2

不同充油量下的缓冲器上下腔气体压力差如 图 11 所示,可以看出:对于 d=10 mm、l=2 mm缓 冲器阻尼孔,上下腔初始时刻气体压力差随着充 填油液量的增加而上升,300 mL充油量初始时刻 上下腔压力差为500 Pa,700 mL充油量初始时刻 上下腔压力差达到了1000 Pa。随着气液的交换, 上下腔压力差开始下降,充油量越少,上下腔气体 压力差下降越大,700 mL时压力差下降值为 80 Pa,300 mL时压力差下降值为381 Pa。充油量 减少的同时会导致下腔所需要充填的油液量增 加,气液充填时间因此增加,对于700 mL充油量, 气液充填时间为26.2 s,对于300 mL充油量,气液 充填时间达到了62.5 s。

图 11 不同充油量缓冲器上下腔气体压力差 Fig. 11 Gas pressure difference between the upper and lower chambers of the buffers with different oil filling levels

3.3 不同孔径缓冲器气液交换系数

薄壁孔不同孔径油液充填过程流量随时间变 化关系如图12所示。

从图12可以看出:随着阻尼孔径的减小,阻尼 孔流量减小,10 mm 孔径阻尼孔平均流量为 3.06×10⁻³ L/s,而4 mm 孔径阻尼孔平均流量已 经下降为0.099×10⁻³ L/s。当阻尼孔径小于 6 mm 时缓冲器上下腔气液充填时间已经达到 133.1 s,超过了该型号飞机规定的2 min以内完成 气液交换的标准。 流量系数以及上下腔气体压力差代入式(3)计算 理论平均流量Q,求解得到不考虑油气交换时油液 充填时间t₁,通过仿真得到的油液充填时间t₂求解 得到油气交换系数C。各类型阻尼孔油液充填时 间以及油气交换系数C取值如表6所示。

$$C = \frac{t_2}{t_1} \tag{20}$$

对于气液交换系数的计算,通过仿真得到的

表6 不同孔径下油气交换修正系数取值

Table 6 V	alues of the corre	ection coefficients for oil	and gas exchange und	er different pore sizes	
平均雷诺数 Re	流量系数 C _d	平均流量 $Q/(L \cdot s^{-1})$	理论充填时间 t ₁ /s	仿真充填时间 t ₂ /s	交

编号	平均雷诺数 Re	流量系数 C _d	平均流量 $Q/(L \cdot s^{-1})$	理论充填时间 t ₁ /s	仿真充填时间 t ₂ /s	交换系数 C
1	14.82	0.53	3.060×10^{-3}	8.47	24.52	2.89
2	7.00	0.38	1.240×10^{-3}	18.46	60.52	3.27
3	4.81	0.30	0.560×10^{-3}	41.58	133.10	3.17
4	1.28	0.15	0.099×10^{-3}	190.91	756.77	3.96

4 结 论

1) 薄壁阻尼孔孔径是影响缓冲器油液充填时间的主要因素,在充填油液量为637 mL时,孔径越小油液流量越小,油液充填时间越长。6 mm孔径 阻尼孔油液充填时间已经达到了133.1 s,超过了 该型号飞机规定的2 min以内完成气液交换的要求,对于该型号飞机起落架,其缓冲器阻尼孔孔径 应大于6 mm。因此在缓冲器阻尼孔设计时不仅要 考虑落震阶段的缓冲性能,还要考虑起落架放下 到着陆阶段的气液充填特性。

2) 对于相同阻尼孔径,起落架缓冲器充油量 对油液流量无影响,不同充油量影响起落架放下 初始时刻上下腔油液高度以及上下腔气体压力 差。充油量越少,缓冲器上下腔液面高度越低,缓 冲器上腔气压越高,上下腔气压差越小,导致本应 该随上腔液面下降的流量保持不变。

3) 在起落架放下过程的油液向下腔充填过程 中,由于进入缓冲器上腔的气体在阻尼孔处呈周 期性上升规律,小孔处气泡上升会暂时停止油液 流动,因此导致流量大幅下降。对于6~10 mm孔 径阻尼孔,其流量约为相同流量系数下油液单相 流动的1/3,对于4 mm孔径阻尼孔,其流量约为相 同流量系数下油液单相流动的1/4。

参 考 文 献

[1] 中国人民解放军总装备部.飞机起落架系统通用规范:

GJB 3063A-2008[S]. 北京:中国人民解放军总装备部, 2008.

General Equipment Department of the Chinese People's Liberation Army. General specification of the landing gear system for aircraft: GJB 3063A—2008[S]. Beijing: General Equipment Department of the Chinese People's Liberation Army, 2008. (in Chinese)

- [2] 贾志强.起落架油气缓冲器气液两相流及阻尼特性研究
 [D].汉中:陕西理工大学,2022.
 JIA Zhiqiang. Study on gas-liquid two-phase flow and damping characteristics of landing gear oleo-pneumatic shock absorber [D]. Hanzhong: Shaanxi University of Technology, 2022. (in Chinese)
- [3] 冯广,向宗威,姜义尧,等.支柱式前起落架系统刚度与摆振稳定性研究[J]. 航空工程进展, 2023, 14(1): 65-72.
 FENG Guang, XIANG Zongwei, JIANG Yiyao, et al. Study on stiffness and shimmy stability of strut-type nose landing gear system [J]. Advances in Aeronautical Science and Engineering, 2023, 14(1): 65-72. (in Chinese)
- [4] 向宗威,冯广,姜义尧,等.飞机起落架结构间隙对摆振稳 定性影响研究进展[J]. 航空工程进展,2022,13(3):86-95.

XIANG Zongwei, FENG Guang, JIANG Yiyao, et al. Research progress on the effect of structural clearance of aircraft landinggear on shimmy stability[J]. Advances in Aeronautical Science and Engineering, 2022, 13(3): 86-95. (in Chinese)

[5] 李静,张义浦,张显余,等.起落架关键结构疲劳寿命分析 及优化研究[J].科技视界,2017(28):206-207.
LI Jing, ZHANG Yipu, ZHANG Xianyu, et al. Fatigue life analysis and optimization research on key structure of landing gear[J]. Science & Technology Vision, 2017(28): 206-207. (in Chinese)

- [6] MILWITZKY B, COOK F E. Analysis of landing-gear behavior[R]. US: NACA, 1953.
- [7] BHARATH M, SINGH P, KANTHETI B. Determination of influence of parameters on undercarriage shock absorber[J]. SAE International Journal of Aerospace, 2018, 12: 1-30.
- [8] RAN F, YUAN F, YU H, et al. Landing dynamic simulation of aircraft landing gear with multi-struts[J]. Journal of Vibro Engineering, 2014, 16(5): 2494–2507.
- [9] AHMAD M A, SHAH S I A, SHAMS T A, et al. Comprehensive design of an oleo-pneumatic nose landing gear strut[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 235: 1605-1622.
- [10] JIAO F. Oil damping energy loss analysis of landing gear shock absorber[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 233: 3096–106.
- [11] 丁勇为,张子豪,魏小辉,等.油孔几何参数对起落架落震动力学的影响研究[J].航空计算技术,2018,48(1):30-33,37.
 DING Yongwei, ZHANG Zihao, WEI Xiaohui, et al. Influence of orifice geometry parameters on landing gear drop dynamics[J]. Aeronautical Computing Technique, 2018,48 (1):30-33,37. (in Chinese)
- [12] SHU N, GU H, LIU H, et al. Analysis of temperature effect on damping characteristics of landing gear shock absorber [C]// 2020 International Conference on Aviation Safety and Information Technology. US: ACM, 2020: 76-81.
- [13] 胡锐, 牟让科, 宋得军, 等. 温度对油一气式起落架缓冲性 能的影响研究[J]. 航空工程进展, 2022, 13(3): 150-156.
 HU Rui, MU Rangke, SONG Dejun, et al. Research on the influence of temperature on the cushioning performance of oil-air landing gear[J]. Advances in Aeronautical Science and Engineering, 2022, 13(3): 150-156. (in Chinese)
- [14] 聂文忠,陆建民,马亚健,等.起落架缓冲器阻尼孔特性分析[J]. 机床与液压,2021,49(1):151-155.
 NIE Wenzhong, LU Jianmin, MA Yajian, et al. Analysis on the characteristics of the damping hole of landing gear buffer[J]. Machine Tool & Hydraulics, 2021, 49(1):151-155. (in Chinese)
- [15] 娄锐,折世强,鲁德发,等.起落架着陆油气混合缓冲器压 力分析[J]. 航空工程进展, 2020, 11(3): 380-386.
 LOU Rui, SHE Shiqiang, LU Defa, et al. Qleo-pneumatic mixed shock absorber landing pressure analysis of landing gear [J]. Advances in Aeronautical Science and Engineering, 2020, 11(3): 380-386. (in Chinese)

- [16] HAN J D, LEE Y S, KANG Y S, et al. Effects of cavitation and drop characteristics on oleo-pneumatic type landing gear systems[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2009, 37: 193–200.
- [17] 金进生,周祖利.小孔流速和流量率分析[J].浙江大学学报(理学版),1995(s1):90-92.
 JIN Jinsheng, ZHOU Zuli. Analysis of orifice flow rate and flow rate [J]. Journal of Zhejiang University (Science Edition), 1995(s1):90-92. (in Chinese)
- [18] DUNHAM J S. Mechanics of the slow draining of a large tank under gravity[J]. American Journal of Physics, 2003, 71: 1204-1207.
- [19] WU D, BURTON R, SCHOENAU G. An empirical discharge coefficient model for orifice flow [J]. International Journal of Fluid Power, 2002, 3: 13–19.
- [20] AHMED E N, GHANEM A A. A novel comprehensive correlation for discharge coefficient of square-edged concentric orifice plate at low Reynolds numbers [J]. Flow Measurement and Instrumentation, 2020, 73: 1–10.
- [21] 黄育红,张锁宾,卫芬芬,等.小孔流速实验中的排水时间 和流量系数的研究[J].大学物理,2020,39(4):28-33.
 HUANG Yuhong, ZHANG Suobin, WEI Fenfen, et al. Study on the drainage time and the flow coefficient in the experiment of the flow velocity of small holes [J]. College Physics, 2020, 39(4):28-33. (in Chinese)
- [22] NICKLIN D J. The air-lift pump: theory and optimization[J]. Transactions on Institute of Chemic Engineers, 1963, 41(2): 29-39.
- [23] STENNING A. An analytical and experimental study of airlift pump performance [J]. Journal of Engineering for Gas Turbines and Power, 2011, 90: 106–110.
- [24] RAJ S. Bubble dynamics and deformation of free liquid surface in aerated liquid storage tanks [J]. Korean Journal of Chemical Engineering, 2021, 38: 716-735.
- [25] SOLBRIG C W, SHERMAN J B. Slugging flow of water draining from the bottom of a non-vented container [J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5254-5262.
- [26] 李望, 卢耀辉, 毕伟.基于 VOF 方法的汽车油箱燃油晃动数值模拟分析[J].装备环境工程, 2019, 16(11): 19-24.
 LI Wang, LU Yaohui, BI Wei. Numerical simulation of fuel sloshing in automobile fuel tank based on VOF method [J]. Equipment Environmental Engineering, 2019, 16 (11): 19-24. (in Chinese)

(编辑:丛艳娟)