文章编号:1674-8190(XXXX)XX-001-09

气动式座舱压力调节器高原机场适应性设计研究

薛兆明,王江辉,王凯祥

(航空工业新乡航空工业(集团)有限公司研发设计院,新乡453002)

摘 要:战斗机典型气动式座舱压力调节器在高原机场条件下使用时存在座舱压力变化速率过大的问题。提出一种在排气活门控制腔上增加一个由高速电磁活门控制的排气旁路的解决方案,分析该方案的工作原理,建立了座舱压力调节系统的数学模型,设计座舱增减压速率控制律,在MATLAB/Simulink软件平台上进行高原机场条件下座舱压力调节系统动态特性计算,并开展地面模拟试验。结果表明:通过合理的座舱增减压速率控制律设计,高速电磁活门既可以实现增压飞行过程中座舱增压速率的有效控制,又可以实现高原机场着陆阶段座舱减压速率的有效控制,所提解决方案有效。

关键词: 气动式座舱压力调节器;座舱压力调节系统;高原机场;高速电磁活门
 中图分类号: V271.4
 文献标识码: A
 DOI: 10.16615/j. cnki. 1674-8190. XXXX. XX.01

Adaptability design and study of pneumatic cabin pressure regulator for high altitude airports

XUE Zhaoming, WANG Jianghui, WANG Kaixiang

(R&D and Design Institute, AVIC Xinxiang Aviation Industry (Group) Co., Ltd., Xinxiang 453002, China)

Abstract: In response to the problem of excessive cabin pressure rate of change when using typical pneumatic cabin pressure regulators for fighter jets under high altitude airport conditions, this paper proposes a solution to add an exhaust bypass controlled by a high-speed solenoid valve to the outflow valve control chamber. The working principle of this solution is analyzed, a mathematical model of the cabin pressure regulation system is established, and a control law for cabin pressure increase and decrease rate is designed. The dynamic characteristics of the cabin pressure regulation system under high altitude airport conditions were calculated on the MATLAB/Simulink software platform, and ground simulation tests were conducted. The results show that through a reasonable design of the cabin pressure increase rate during the pressurized flight process and the cabin pressure decrease rate during the landing stage of the high altitude airport. The proposed solution is effective.

Key words: pneumatic cabin pressure regulator; cabin pressure regulation system; high altitude airport; high speed solenoid valve

收稿日期: 2024-01-09; 修回日期: 2024-03-26

通信作者: 薛兆明(1976-), 男, 学士, 研究员级高级工程师。 E-mail: 1727540805@qq. com

引用格式: 薛兆明, 王江辉, 王凯祥. 气动式座舱压力调节器高原机场适应性设计研究[J]. 航空工程进展, XXXX, XX(XX): 1-9.

XUE Zhaoming, WANG Jianghui, WANG Kaixiang. Adaptability design and study of pneumatic cabin pressure regulator for high altitude airports[J]. Advances in Aeronautical Science and Engineering, XXXX, XX(XX): 1-9. (in Chinese)

0 引 言

座舱压力调节器通过控制座舱的排气量实现 座舱压力及其变化速率的控制,以保证飞机的结 构安全和乘员的舒适^[1-2]。气动式座舱压力调节器 以空气为信息传递介质,通过感压元件和弹性元 件实现力的传递,达到调节座舱排气量的目的^[3]。 此类压调器在20世纪50年代诞生,经历多年迭 代,于20世纪70年代成型,由于其结构成熟、体积 小、重量轻、响应迅速,能够适应战场复杂的电磁 环境,受到了广泛的青睐^[4-6]。因此,国内外战斗机 上仍然以气动式座舱压力调节器为主^[7]。

目前,我国战斗机上装备的典型气动式座舱 压力调节器普遍采用的座舱压力制度为^[8]:当飞行 高度小于2400m时,座舱压力与大气压力保持一 致;当飞行高度大于2400m且小于7000m时,座 舱压力保持在75.6kPa,即座舱高度保持在2400 m;当飞行高度大于7000m时,座舱余压保持在 34.5kPa。

由战斗机典型座舱压力制度可知,当战斗机 在海拔高度大于2438m及以上的高原机场^[9]起降 时,起降阶段座舱存在余压,且座舱余压随起降机 场高度的增加而增加。座舱余压的存在导致:1) 在起飞阶段,当座舱开始增压时,若座舱压力由外 界大气压力直接增压至75.6kPa,座舱的增压速率 会比较大;2)在着陆阶段,当座舱开始减压时,若 座舱压力由75.6kPa直接减压至外界大气压力, 座舱的减压速率也会比较大。而过大的座舱增减 压速率会导致飞行员出现不同程度的"压耳"问 题,"压耳"问题不仅影响飞行员舒适性,严重时还 会造成飞行员骨膜破裂,听力受损^[10-14]。因此,必 须对高原机场起降过程中的座舱增减压速率进行 有效的控制,以保证飞行员的舒适。

从气动式座舱压力调节器诞生至今,飞行员 "压耳"问题一直是困扰战斗机座舱压力调节系统 的关键问题。造成飞行员"压耳"问题的原因主要 是短时间内座舱供排气流量不匹配,导致座舱压 力的快速变化。基于技术封锁的原因,国外很少 有关于此类问题研究的报道。在国内,吴豪^[3]通过 分析排气活门小腔对快速调压能力的影响,给出 了提升排气活门响应速度的设计建议,但仅通过 提高排气活门的响应速度无法解决高原机场起降 过程中的座舱增减压速率有效控制的问题。减震 器^[1-2]利用其控制的活门,在控制腔压力迅速增加 时附加放气,可以在一定程度上解决座舱增压速 率过大的问题,但无法解决座舱减压速率过大的 问题,因此,减震器也无法完全满足战斗机在高原 机场起降阶段的座舱增减压速率控制的需求,且 结构复杂。白海云^[10]针对某型飞机座舱压力调节 系统高原起降的使用需求,给出了压力制度的设 计方案和正向设计方法,并未从压力调节器结构 层面给出解决方案。另外,未来飞机座舱智慧化 转型是必然趋势^[15],气动式座舱压力调节器必须 增加电子控制单元以满足飞机智慧座舱的构建 需求。

本文在充分保持原有典型气动式座舱压力调 节器结构和压力制度的基础上,提出一种在排气 活门控制腔上增加一个由高速电磁活门控制的排 气旁路的解决方案,分析该方案的工作原理,建立 座舱压力调节系统的数学建模,设计座舱增减压 速率控制律,在MATLAB/Simulink软件平台上进 行高原机场条件下座舱压力调节系统动态特性计 算,并开展地面模拟试验。

1 解决方案

针对战斗机在高原机场起降阶段的座舱增减 压速率控制的需求,本文提出一种解决方案如图1 所示,由排气活门、绝压控制机构、余压控制机构 和高速电磁活门组成。座舱内空气经定径孔11进 入到排气活门的控制腔A中,控制腔通过管道分 别与绝压控制机构的左腔、余压控制机构的右腔 和高速电磁活门16相连,进入到控制腔中的空气 可经绝压调节活门7、余压调节活门2、高速电磁活 门16通向外界大气;座舱不供气时,排气活门13 在弹簧10预紧力和重力作用下而关闭;座舱供气 后,在高原机场起飞阶段,当战斗机速度小于某值 时,高速电磁活门16打开,座舱内空气经定径孔11 进入到排气活门的控制腔中,经打开的高速电磁 活门16通向外界大气,使排气活门控制腔与外界 大气相通,由于定径孔11的限流作用,使控制腔的 压力增加速度比座舱压力增加速度要小,当膜片 12上、下的压力差超过某值时,排气活门13打开排 气;当战斗机速度达到某值时,高速电磁活门16关 闭,座舱由自由通风状态转至增压状态,座舱压力 随高度按座舱压力制度变化。在增压飞行过程 中,当座舱增压速率超过设计阈值时,高速电磁活

门16打开以增加控制腔的排气量, 膜片12上、下的压力差迅速增加, 排气活门13迅速打开以增加 座舱的排气量, 从而限制了座舱增压速率; 在高原 机场着陆阶段, 当战斗机速度小于某值时, 高速电 磁活门16打开, 座舱由增压状态转换至自由通风 状态, 座舱开始减压, 当座舱减压速率超过设计阈 值时, 高速电磁活门16关闭以减小控制腔排气量, 膜片12上、下的压力差迅速减小, 排气活门13迅 速关小以减小座舱的排气量, 从而限制了座舱减 压速率。

注:1、3、5、8、10弹簧,4、12、15膜片,2余压调节活门,7绝压调节 活门,6真空波纹管,11定径孔,13排气活门,14支承台,16高速电 磁活门

因此,凭借高速电磁活门响应迅速、控制方便 的优点^[16],通过控制高速电磁活门的开关,既可以 实现增压飞行过程中座舱增压速率的控制,又可 以实现高原机场着陆阶段座舱减压速率的控制。

2 座舱压力调节系统的动态数学模型

为了计算战斗机在高原机场起降和增压飞行 过程中座舱压力的动态特性,须建立座舱压力调 节系统的动态数学模型。

2.1 座舱压力的动态数学模型

在建立座舱压力的动态数学模型时,作了以

下假设^[17-18]:1) 座舱容积不变;2) 在座舱压力调节 过程中,座舱内空气的温度保持不变;3) 座舱内空 气的压力和温度均在常温常压范围内,因此,座舱 内的空气可以作为理想气体来处理,其压力、温度 和容积满足理想气体状态方程;4) 座舱的空气泄 漏量相对于座舱的供、排气量很小,不足以影响座 舱压力控制系统的工作,予以忽略。

根据理想气体状态方程可得座舱压力的动态 数学模型^[17-18]为

$$\frac{V_c}{RT_c}\frac{dp_c}{d\tau} = G_K - G_B \tag{1}$$

式中: p_c 为座舱压力(Pa); V_c 为座舱容积(m³); T_c 为座舱空气温度(K);R为理想气体常数,对空气 取 287 J/(kg·K); G_{κ} 为座舱供气量; G_{B} 为座舱排 气量。

2.2 排气活门控制腔压力的动态数学模型

与建立座舱压力的动态数学模型不同,在建 立排气活门控制腔压力的动态数学模型时,不能 忽略控制腔容积的变化。根据理想气体状态方程 可得控制腔压力的动态数学模型^[17-18]为

$$\frac{V_A}{RT_A} \frac{dp_A}{d\tau} = G_d - G_1 - G_2 - G_3 - G_V \quad (2)$$

式中: p_A 为控制腔压力; V_A 为控制腔容积; T_A 为控制腔内空气温度; G_a 为经定径孔11进入到控制腔的空气流量; G_1 、 G_2 和 G_3 分别为经绝压调节活门7、余压调节活门2和高速电磁活门16流出到外界大气的空气流量; G_V 为由控制腔容积变化而引起的容积当量流量。

$$G_{V} = \frac{p_{A}}{RT_{A}} \frac{dV_{A}}{d\tau}$$
(3)

式中:控制腔容积 V_A与排气活门开度 l_B的关系可 近似^[1]为

$$V_A = \alpha l_B^2 + \beta l_B + \gamma \tag{4}$$

式中: α 、 β 、 γ 根据排气活门结构确定; l_B 为排气活门开度。

2.3 排气活门运动的数学模型

根据牛顿运动第二定律,忽略排气活门的流体动力,可得排气活门运动的数学模型为

$$m_{B}\frac{d^{2}l_{B}}{d\tau^{2}} + c_{B}\frac{dl_{B}}{d\tau} + K_{B}l_{B} = A_{M}(p_{c} - p_{A}) - W_{B}^{*} - F_{s0}$$
(5)

式中:m_B为排气活门可动部分质量;c_B为排气活门

阻尼系数; K_B 为排气活门弹簧10的刚度; A_M 为排 气活门膜片12的有效面积; F_s)为排气活门弹簧10 的预紧力; W_B^* 为排气活门可动部分重力。

2.4 绝压调节活门运动的数学模型

根据牛顿运动第二定律,忽略绝压调节活门的流体动力,可得绝压调节活门运动的数学模型为

$$m_{1} \frac{d^{2}l_{1}}{d\tau^{2}} + c_{1} \frac{dl_{1}}{d\tau} + K_{10}l_{1} = p_{A}A_{M1} + K_{10}l_{10} - (F_{s50} - F_{s80})$$
(6)

式中: m_1 为绝压调节活门质量; c_1 为绝压调节活门 阻尼系数; K_{10} 为弹簧5、弹簧8和真空波纹管6刚 度之和; l_1 为绝压调节活门开度; l_{10} 为绝压调节活 门的最大开度; A_{M1} 为真空波纹管6的有效面积; F_{50} 为弹簧5的预紧力; F_{50} 为弹簧8的预紧力。

2.5 余压调节活门运动的数学模型

根据牛顿运动第二定律,忽略余压调节活门 的流体动力,可得余压调节活门运动的数学模 型为

$$m_{2} \frac{d^{2}l_{2}}{d\tau^{2}} + c_{2} \frac{dl_{2}}{d\tau} + K_{20}l_{2} = A_{M2}(p_{A} - p_{h}) - (F_{s10} - F_{s30})$$
(7)

式中: m_2 为余压调节活门质量; c_2 为余压调节活门 阻尼系数; K_{20} 为弹簧1和活门弹簧3刚度之和; l_2 为绝余压调节活门开度; A_{M2} 为膜片4的有效面积; $F_{,10}$ 为弹簧1的预紧力; $F_{,30}$ 为活门弹簧3的预 紧力。

2.6 高速电磁活门运动的数学模型

在建立高速电磁活门运动的数学模型时,将 其简化为一个惯性环节^[19]。

$$\frac{l_3}{l_{3r}} = \frac{1}{\tau_3 s + 1}$$
 (8)

式中:*l*₃为高速电磁活门的开度;*l*₃,为高速电磁活 门开度的指令值;*r*₃为高速电磁活门的机电时间 常数。

2.7 高速电磁活门控制律设计

根据人体生理要求^[8],在高原机场起飞和增压

飞行过程中,为实现对座舱增压速率的快速跟踪 控制,高速电磁活门的控制律采用的滞环比较 器^[20]如图2所示,当座舱增压速率大于500 Pa/s 时,高速电磁活门打开,当座舱增压速率小于 450 Pa/s时,高速电磁活门关闭。在高原机场着陆 过程中,为实现对座舱减压速率的快速跟踪控制, 高速电磁活门的控制律采用的滞环比较器如图3 所示,当座舱减压速率小于-1000 Pa/s时,高速 电磁活门关闭,当座舱减压速率大于-950 Pa/s 时,高速电磁活门打开。

图 2 座舱增压速率控制滞环比较器 Fig. 2 Hysteresis comparator for cabin pressurization rate control

图 3 座舱减压速率控制滞环比较器 Fig. 3 Hysteresis comparator for cabin decompression rate control

在座舱增减压速率控制律设计时,增加一定的滞环,可以防止高速电磁活门在设置的座舱增 减压速率附近来回振荡,提高系统的抗干扰能力。

2.8 活门流量的计算

式(1)和(2)中, G_B 、 G_d 、 G_1 、 G_2 和 G_3 的计算均 采用流动为绝热过程的喷嘴流量计算公式^[21-22],以 G_B 的计算为例有:

$$G_{B} = \begin{cases} \mu_{B} F_{B} \frac{0.156p_{c}}{\sqrt{T_{c}}} \sqrt{\left(\frac{p_{h}}{p_{c}}\right)^{1.43}} - \left(\frac{p_{h}}{p_{c}}\right)^{1.71}} & \left(\frac{p_{h}}{p_{c}} > 0.528\right) \\ \mu_{B} F_{B} \frac{0.0404p_{c}}{\sqrt{T_{c}}} & \left(\frac{p_{h}}{p_{c}} \leqslant 0.528\right) \end{cases}$$
(9)

式中:µ_B为排气活门流量系数;F_B为排气活门的流 通面积;p_b为外界大气压力。

3 仿真计算及结果分析

利用建立的座舱压力调节系统的动态数学模型, 在MATLAB/Simulink软件平台上进行仿真计算。

3.1 仿真计算条件

1) 座舱压力调节系统的参数 座舱压力调节系统的参数如表1所示。

	表 1 座舱压	力调节系统的参数	
Table 1	Parameters of c	cabin pressure regulation system	m

序号	参数	数值
1		2
2	座舱空气温度 K	298
3	排气活门直径/m	0.085
4	排气活门可动部分质量/kg	0.121
5	膜片12有效面积/m ²	0.0139
6	弹簧10刚度/(N·m)	170
7	弹簧10预紧力/N	4
8	定径孔直径/m	0.0006
9	排气活门阻尼系数/[N·(m·s)]	150
10	绝压调节活门质量/kg	0.0538
11	绝压调节活门阻尼系数/[N·(m·s)]	20
12	真空波纹管有效面积/m ²	0.000616
13	真空波纹管刚度/(N·m)	2 000
14	弾簧5刚度/(N·m)	1 000
15	弹簧5预紧力/N	50.5
16	弾簧8刚度/(N·m)	750
17	弹簧8预紧力/N	2.625
18	绝压调节活门孔直径/m	0.0028
19	绝压调节活门直径/m	0.0038
20	绝压调节活门最大开启量/m	0.0006
21	余压调节活门质量/kg	0.008
22	余压调节活门阻尼系数/[N·(m·s)]	8
23	膜片4有效面积/m ²	0.000961
24	弾簧1刚度/(N·m)	2 000
25	弹簧1预压缩力/N	33.65
26	弹簧3刚度/(N·m)	670
27	弹簧3预压缩力/N	1.665
28	余压调节活门孔直径/m	0.0028
29	余压调节活门直径/m	0.0038
30	余压调节活门的最大开启量/m	0.0006
31	高速电磁活门机电时间常数/s	0.01
32	高速电磁活门孔直径/m	0.003
33	高速电磁活门直径/m	0.004m
34	高速电磁活门的最大开启量/m	0.0001

2) 飞行剖面

飞行剖面如图4所示,起降机场的高度为4 000m,巡航高度为18000m,15s时,战斗机开始 以100m/s的垂直速率爬升;35s时,爬升至6000 m;平飞15s后,继续以100m/s的垂直速率爬升; 90s时,爬升至10000m;平飞15s后,继续以100 m/s的垂直速率爬升;185s时,爬升至巡航高度18 000m;平飞20s后,开始以150m/s的垂直下降速 率下降;298s时,战斗机着陆;325s时,飞行 结束。

3) 座舱供气量剖面

根据飞参数据中座舱供气量变化比较严酷的 情况,设计的座舱供气量剖面如图5所示,座舱正 常的供气量为450 kg/h,在6000 m和10000 m高 度上,分别进行了两次座舱供气量冲击试验,座舱 供气量在2s内由450 kg/h增加至900 kg/h,然后 再在2s内由900 kg/h减小至450 kg/h。

3.2 仿真计算结果的评价标准

仿真计算结果的评价标准为《座舱压力制度 生理要求:GJB 646-88》^[23],标准规定:歼击机、轰 炸机的座舱增压率的生理限值为660 Pa/s,座舱减 压率的生理限值为1330 Pa/s。

3.3 仿真计算结果及分析

飞行剖面和座舱供气量剖面的条件下,如图 4~图5所示,座舱压力、座舱压力变化率、排气活 门开度、绝压和余压调节活门开度和高速电磁活 门开度的仿真计算结果分别如图6~图10所示。 仿真计算结果表明:

1)在高原机场起飞阶段,座舱压力由外界大 气压力逐渐增压至75.6 kPa(如图6所示),在增压 过程中,因座舱压力小于压力制度要求的理论座 舱压力值,绝压调节活门关闭(如图9所示),排气 活门开度逐渐减小(如图8所示),座舱开始增压, 增压速率由高速电磁活门控制,当增压速率大于 500 Pa/s时,高速电磁活门打开,当增压速率小于 450 Pa/s时,高速电磁活门关闭(如图10所示),整 个增压过程中,增压速率基本控制在500 Pa/s附近 (如图7所示),满足GJB 646-88 中的规定;

2)在高原机场着陆阶段,座舱压力需由 75.6 kPa逐渐减压至外界大气压力(如图6所示), 减压过程中,高速电磁活门打开(如图10所示),排 气活门开度逐渐增大(如图8所示),座舱开始减 压,因减压过程中座舱压力小于压力制度要求的 理论座舱压力值,绝压调节活门关闭(如图9所 示),减压速率由高速电磁活门控制,当减压速率 大于1000 Pa/s时,高速电磁活门关闭,当减压速率 小于950 Pa/s时,高速电磁活门打开(如图10所示), 整个减压过程中,减压速率基本控制在1000 Pa/s 附近(如图7所示),满足GJB 646-88 中的规定;

3)在 6 000 和 10 000 m 高度上,座舱供气量突 然增加时,座舱压力突然增加,当座舱增压速率大 于 500 Pa/s时,高速电磁活门打开以限制增压速率 的进一步增加(如图 10 所示),增压速率基本控制 在 500 Pa/s 附近(如图 7 所示),满足 GJB 646-88 中的规定;

4) 在余压飞行阶段, 战斗机以大速率俯冲过 程中, 为保持座舱余压不变, 座舱增压速率较大, 与座舱外大气压力的增加速率相同, 不满足人体 生理要求,当座舱增压速率大于500 Pa/s时,高速 电磁活门打开以限制座舱增压速率(如图10所 示),在大速率俯冲过程中,座舱增压速率基本控 制在500 Pa/s附近(如图7所示),满足GJB 646-88 中的规定,此过程中余压调节活门关闭(如图9所 示),由于限制了座舱增压速率,导致座舱压力小 于压力制度要求的理论座舱压力值,座舱余压也 小于压力制度要求的理论座舱余压,不影响战斗 机结构安全。

4 试验验证

为验证本文所提解决方案的有效性,开展6 000m高原机场起降地面模拟试验,并在座舱增压 过程中进行了多次供气流量冲击试验和大速率爬 升俯冲试验,试验飞行剖面和供气流量剖面分别 如图11和图12所示,试验结果分别如图13~图14 所示。

地面模拟试验结果表明:在高原机场起飞、供 气流量冲击和大速率俯冲过程中,增压速率基本 控制在500 Pa/s附近,满足GJB 646-88中的规定; 在高原机场着陆过程中,减压速率基本控制在1000 Pa/s附近,满足GJB 646-88中的规定。

5 结 论

1) 在高原机场起飞阶段,座舱压力由外界大 气压力逐渐增压至 75.6 kPa的过程中,增压速率 基本控制在 500 Pa/s 附近,满足 GJB 646-88 中的 规定。

2) 在高原机场着陆阶段,座舱压力需由 75.6 kPa逐渐减压至外界大气压力的过程中,减压 速率基本控制在1000 Pa/s附近,满足GJB 646-88 中的规定。

3)在座舱供气量突然增加和余压飞行阶段大 速率俯冲过程中,增压速率基本控制在500 Pa/s附 近,满足GJB 646-88中的规定。

参考文献

- [1] 王浚,徐杨禾.飞机座舱空气参数控制[M].北京:国防工 业出版社,1981.
 WANG Jun, XU Yanghe. Control of aircraft cabin air parameters [M]. Beijing: National Defence Industry Press,
- [2] 寿荣中,何慧珊.飞行器环境控制[M].北京:北京航空航 天大学出版社,2004.

1980. (in Chinese)

SHOU Rongzhong, HE Huishan. Aircraft environmental control [M]. Beijing: Beihang University Press, 2004. (in Chinese)

- [3] 吴豪,刘猛,王浚. 小腔对排气活门快速调压能力的影响
 [J/OL]. 北京航空航天大学学报:1-14[2024-01-09]. https://doi.org/10.13700/j.bh.1001-5965.2023.0248.
 WU Hao, LIU Meng, WANG Jun. Effect of balance chamber on rapid pressure regulation ability of outflow valve[J/OL]. Journal of Beijing University of Aeronautics and Astronautic: 1-14[2024-01-09]. https://doi.org/10.13700/j. bh.1001-5965.2023.02480.(in Chinese)
- [4] WHITNEY T J, LUI T L. Aircraft cabin multi-differential pressure control system: US7066808B2[P]. 2006-06-27.
- [5] HORNER D, ARTHURS T R, ARMSTRONG B. Poppet valve for cabin pressure control systems: US2011005714 1A1[P]. 2011-03-10.
- [6] Aeronautics-Guide. Control of cabin pressure Aircraft pressurization systems (Part 3) [EB/OL]. [2024-01-09]. https://www.aircraftsystemstech.com/2017/05/controlof-aircraft-cabin-pressure.html.
- [7] 郑新华. 气动式座舱压力调节系统关键技术研究与优化设计[D]. 西安:西北工业大学,2016.
 ZHENG Xinhua. Key technology and optimization of pneumatic cabin pressure regulating system [D]. Xi'an: Northwestern Polytechnical University, 2016. (in Chinese)
- [8] 肖华军.航空供氧防护装备生理学[M].北京:军事医学 科学出版社,2003.
 XIAO Huajun. Physiology of aviation oxygen protective equipment [M]. Beijing: Military Medical Science Press, 2003.(in Chinese)
- [9] 中国民用航空局.高原机场运行:AC-121-FS-2015-21R1 [S].北京:中国民用航空局,2015.

Civil Aviation Administration of China. Plateau Airport Operations: AC-121-FS-2015-21R1[S]. Beijing: Civil Aviation Administration of China, 2015. (in Chinese)

[10] 白海云.飞机座舱压力调节系统高原适应性设计研究 [C]//第六届中国航空学会青年科技论坛.沈阳:中国航 空学会,2014:1444-1448.

BAI Haiyun. Design and research of aircraft cockpit pressure regulating system for high-altitude takeoff and landing[C]// The 6th Chinese Society of Aeronautics & Astronautics Youth Science and Technology Forum. Shenyang: CSAA, 2014: 1444-1448. (in Chinese)

- [11] 刘剑飞,王伟.飞机座舱压力调节系统推油门"压耳"故障 原因及解决措施研究[J]. 河南科技,2019(1):92-95.
 LIU Jianfei, WANG Wei. Solution and research of push throttle pressure ear fault in cabin pressure regulating system
 [J]. Henan Science and Technology, 2019(1):92-95. (in Chinese)
- [12] 朱治平,于庆祥,部德成,等.模拟座舱压力变化对中耳影响的研究[J]. 航天医学与医学工程,1989(1):30-35.
 ZHU Zhiping, YU Qingxiang, GAO Decheng, et al. Study on the effect of simulated cabin pressure changes on the middle ear[J]. Space Medicine & Medical Engineering, 1989 (1): 30-35. (in Chinese)
- [13] 胡正元,史秀凤,范静平.不同增压速率所引起的耳气压 伤特征[J]. 声学技术, 2004(1): 25-28.
 HU Zhegnyuan, SHI Xiufeng, FAN Jingping. Characteristics and aural barotrauma caused by different compression rate[J]. Technical Acoustics, 2004(1): 25-28. (in Chinese)
- [14] 崔超群.针对座舱压力增长率的分析与研究[J].中国科技 纵横,2013(2):183-184.
 CUI Chaoqun. Analysis and research on the growth rate of cabin pressure[J]. China Science & Technology Overview, 2013(2):183-184. (in Chinese)
- [15] 刘光辉,孙迪,李园园.飞机智慧座舱发展技术研究[J]. 航空工程进展, 2024, 15(1): 141-148.
 LIU Guanghui, SUN Di, LI Yuanyuan. Study on development technology of aircraft smart cockpit[J]. Advances in Aeronautical Science and Engineering, 2024, 15(1): 141-148. (in Chinese)
- [16] 陈晓明,朱玉川,李林飞,等.高速电磁阀相移 PWM 电压 驱 动策 略 研 究 [J/OL].北京 航空 航 天大学学报:1-12
 [2024-04-30]. https://doi.org/10.13700/j.bh.1001-5965.2022.1018.

CHEN Xiaoming, ZHU Yuchuan, LI Linfei, et al. Investigation on phase-shifted PWM voltage drive strategy of highspeed solenoid valve[J/OL]. Journal of Beijing University of Aeronautics and Astronautic: 1-12 [2024-04-30]. https://doi.org/10.13700/j.bh.1001-5965.2022.1018.(in Chinese)

- [17] 魏天航,朱磊,赵竞全,等.电子气动式座舱压力控制系统 建模分析[J].系统仿真学报,2014(3):720-725.
 WEI Tianhang, ZHU Lei, ZHAO Jingquan, et al. Modeling design of electronic-pneumatic cabin pressure control system[J]. Journal of System Simulation, 2014(3):720-725. (in Chinese)
- [18] 霍昱旭,李玉忍,宋颖慧.飞机座舱压力气动调节系统的 建模与仿真[J]. 计算机仿真, 2014, 31(1): 36-40.
 HUO Yuxu, LI Yuren, SONG Yinghui. Modeling and simulation of aircraft cabin pressure's pneumatic regulator system
 [J]. Computer Simulation, 2014, 31(1): 36-40. (in Chinese)
- [19] 孙佳.开关阀控气缸模型及PWM控制系统的研究[D].哈尔滨:哈尔滨工业大学,2008
 SUN Jia. Model of cylinder controlled by on-off valve and system of PWM control [D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese)
- [20] 李云丰,许杰锋,许彬,等.面向低成本轻型化直流耗能装置的滞环控制策略[J/OL].中国电机工程学报:1-11
 [2023-11-14]. https://doi.org/10.13334/j.0258-8013.pcsee.230833.

LI Yunfeng, XU Jiefeng, XU Bin, et al. Hysteresis control

strategy for low-cost and light-weight DC energy dissipation devices[J/OL]. Proceedings of the CSEE: 1-11[2023-11-14]. https: //doi. org/10.13334/j. 0258-8013. pcsee. 230833. (in Chinese)

- [21] 廉乐明.工程热力学[M]. 第5版. 北京:中国建筑工业 出版社,2007.
 LIAN Leming. Engineering thermodynamics[M]. 5th ed.
 Beijing: China Architecture & Building Press, 2007. (in Chinese)
- [22] KANHAIYA L C, BISHAKH B, VARMA A K, et al. Dynamic modeling of a cabin pressure control system [J]. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 2020, 234(2): 401– 415.
- [23] 中国国防科学技术工业委员会.座舱压力制度生理要求: GJB 646-88[S].北京:中国国防科学技术工业委员会, 1988.

State Administration of Science, Technology and Industry for National Defence of PRC. Physiological requirements for cabin pressure system: GJB 646-88[S]. Beijing: State Administration of Science, Technology and Industry for National Defence of PRC, 1988. (in Chinese)

(编辑:丛艳娟)