文章编号:1674-8190(2024)06-158-06

高超声速折叠翼飞行器气动特性分析

吴枣平,秦剑,吴杰

(南京航空航天大学航空学院,南京210016)

摘 要:在执行任务时,高超声速飞行器面临外部环境的复杂性,需应对多种任务挑战。常规固定翼飞行器在 特定工况下的最佳气动性能有限,而变体飞行器能够通过改变气动外形,控制其飞行特性,以适应不同的任务 环境。采用数值模拟方法,分析高超声速折叠翼飞行器在机翼折叠前后的气动特性变化,阐明机翼折叠是如何 影响这些特性的;同时,探讨机翼折叠过程中,机翼的气动弹性对飞行器气动特性的影响。结果表明:机翼的折 叠过程对阻力系数的影响较小,但对升力系数与升阻比产生较大的影响;此外,由于翼尖激波的存在,应力主要 集中在飞行器头部与翼尖部分,导致气动弹性对飞行器的气动特性影响较小。

关键词:折叠机翼;高超声速;气动特性;数值模拟;气动弹性

DOI: 10. 16615/j. cnki. 1674-8190. 2024. 06. 14

中图分类号: V211.41; V411

文献标识码:A

Analysis of aerodynamic characteristics of hypersonic folding-wing aircraft

WU Zaoping, QIN Jian, WU Jie

(College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract: Hypersonic aircraft encounter challenges in adapting to complex external environments during missions. Conventional fixed-wing aircraft have limited optimal aerodynamic performance under specific conditions. In contrast, morphing aircraft can adapt to various mission environments by altering their aerodynamic shape to control their flight characteristics. Based on numerical simulations, the changes in aerodynamic characteristics of a hypersonic folding-wing aircraft before and after wing folding are analyzed in this paper for revealing the effects of wing folding on aerodynamic performance. Meanwhile, the influence of aeroelasticity in the wing on the aerodynamic characteristics of the aircraft during the wing folding process is discussed. The results show that the wing folding process has a little effect on the drag coefficient but significantly affects the lift coefficient and lift-to-drag ratio. Moreover, due to the presence of shock waves at the wingtips, stress is mainly concentrated in these areas, resulting in a relatively small impact of aeroelasticity on the aircraft's aerodynamic behavior.

Key words: folding-wing; hypersonic; aerodynamic characteristics; numerical simulation; aeroelasticity

收稿日期: 2024-04-01; 修回日期: 2024-05-09

基金项目: 江苏省自然科学基金(BK20231437)

通信作者: 吴杰(1979-), 男, 博士, 教授、博导。 E-mail: wuj@nuaa. edu. cn

引用格式:吴枣平,秦剑,吴杰.高超声速折叠翼飞行器气动特性分析[J].航空工程进展,2024,15(6):158-163,173.

WU Zaoping, QIN Jian, WU Jie. Analysis of aerodynamic characteristics of hypersonic folding-wing aircraft[J]. Advances in Aeronautical Science and Engineering, 2024, 15(6): 158-163, 173. (in Chinese)

0 引 言

自从莱特兄弟发明飞机以来,它在交通运输 和空中作战中一直扮演着极其重要的角色。在20 世纪美苏冷战期间,对飞机性能的要求逐渐提高, 从最初的喷气式飞机逐步发展到集成了隐身、超 声速巡航、超机动性和超态势感知等综合性能的 现代飞机。目前,大部分飞机是固定翼飞机,其最 佳性能单一,无法满足多任务性能需求[1]。受到鸟 类飞行的启发,人们提出了变形翼的概念,通过改 变机翼气动外形来控制飞机的气动性能,以满足 多任务需要。变形机翼主要分为三种类型:变后 掠翼、伸缩机翼和折叠机翼[2-6]。其中,折叠机翼通 过折叠和展开机翼,最多可实现200%的机翼面积 变化[7]。这种机翼面积的改变使得飞机的气动特 性发生改变,能够更加有效的完成任务。如何准 确测定由于气动外形变化引起的气动特性改变, 是当前研究的一个重要课题。

Scarlett 等^[8]综合多体动力学、空气动力学和 控制理论,建立了机翼折叠的柔性多体动力学模 型,分析了机翼在不同工况下的气动弹性特性;徐 孝武等^[9]对折叠翼飞行器的非对称变形控制方案 及其操纵效率进行了研究,通过仿真计算,确定了 飞行器非对称变形控制的最大有效范围;单继祥 等^[10]采用数值模拟方法研究了在低速条件下火箭 弹折叠翼的气动特性,并分析了其展开运动的过 程,结果表明,随着机翼折叠角度的变化,折叠翼 所受气动力呈现先增大后减小的趋势;Abdessemed 等^[11]在动态网格划分方案中引入瞬态变形, 分析了变形翼型的气动特性;Huang YC等^[12]在文 献[11]的基础上采用计算流体力学方法和动态网 格划分方法研究了Z形折叠机翼在不同折叠速度 下的气动特性;XuH等^[13]采用模拟升降面法对折 叠翼变形过程进行模拟,并将其结果与CFD的结 果进行对比,以降低在大角度折叠情况下对计算 网格质量的严格要求。

综上所述,关于折叠翼飞行器的研究主要集 中在低速条件下的飞行性能及其数学模型的建 立,针对高超声速条件下折叠翼飞行器气动特性 的研究相对较少。因此,本文探讨某折叠翼飞行 器在高超声速环境中的气动响应,及其在机翼折 叠过程中气动特性的变化情况。

1 数值方法

1.1 几何模型与计算网格

本文采用的某高超声速折叠翼飞行器如图1 所示,图中红色部分的小翼可折叠。

飞行器几何结构复杂,部分边缘局部尺寸较 小,因此采用非结构化网格对其翼边缘及近翼面 部分网格进行加密。根据飞行器的几何对称性, 只对半模进行网格划分和计算,最终网格数量约 为600万。

在本文计算中,飞行马赫数为6,飞行高度为 36 km,来流压强为547 Pa,来流温度为236 K,飞 行器的迎角和侧滑角均为0°。为保证网格质量,边 界层采用结构网格,其他区域采用非结构网格。 高超声速折叠翼飞行器的计算网格如图2所示。

图 2 飞行器网格 Fig. 2 Mesh of the aircraft

1.2 控制方程

CFD数值求解的对象是Navier-Stokes(N-S) 方程。直角坐标系下积分形式的三维可压缩非定 常N-S方程为

$$\frac{\partial}{\partial t} \int_{a} \mathbf{Q} \mathrm{d}V + \int_{\partial a} (F - G) \cdot \mathbf{n} \mathrm{d}S = 0 \qquad (1)$$

式中: *Ω*为任意形状的控制体; dS为控制体上微元 面的面积; *n*为微元面的外法向单位矢量; *Q*为守 恒变量, 包含密度、动量和总能; *F*为无黏通量; *G* 为黏性通量。

Q、F、G的表达式如下:

式中: ρ 为密度;u、v和w为x、y、z方向的速度;p为 压强;E为单位质量总能;H为单位质量总常;U为 逆变速度; U_s 为微元面的法向运动速度; τ 为摩尔 应力张量; Θ_i 为黏性应力功和流体热传导项的组 合项。

采用Stokes假设,则有:

$$\lambda = -\frac{2}{3}\mu \tag{3}$$

本文考虑湍流流动,根据涡黏性假设,黏性系数由两部分组成:

$$\mu = \mu_L + \mu_T \tag{4}$$

式中:µL为层流黏性系数;µT为湍流黏性系数。

Þ

为了封闭上述方程,还需要加入状态方程。 对于理想气体,*p*、*p*、*T*、*E*以及*H*之间满足如下状态方程:

$$=\rho RT$$
 (5)

$$\rho = (\gamma - 1)\rho \left[E + \frac{1}{2} \left(u^2 + v^2 + w^2 \right) \right] \quad (6)$$

$$H = E + \frac{p}{\rho} \tag{7}$$

1.3 湍流模型

本文选用 k-ω SST 湍流模型,该模型是两方 程模型,综合了 k-ε模型在远场中对自由来流条件 的无关性和 k-ω模型在近壁面湍流方面的精确性 和鲁棒性,并且考虑了湍流剪切应力在湍流黏性 中的输运。两个输运方程的求解对象分别是湍流 动能 k和涡耗散ω,两方程模型的微分形式为

$$\frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \overline{G_k} + \frac{\partial}{\partial x_i} \left[(\mu + \sigma_k \mu_i) \frac{\partial k}{\partial x_j} \right] - Y_k$$
(8)

$$\frac{\partial}{\partial t} (\rho \omega) + \frac{\partial}{\partial x_i} (\rho \omega u_i) = \overline{G_\omega} + \frac{\partial}{\partial x_i} \left[(\mu + \sigma_\omega \mu_i) \frac{\partial \omega}{\partial x_j} \right] - Y_\omega + D_\omega$$
(9)

式中: G_k 为平均梯度产生的湍流动能的生成项; G_{ω} 为涡耗散的生成项;等号右边第二项分别为湍流 动能 k和涡耗散 ω 的扩散项; Y_k 和 Y_{ω} 分别为湍流 动能 k和涡耗散 ω 的耗散项; D_{ω} 为交叉耗散项。

2 计算结果与分析

2.1 飞行器气动特性分析

基于 Ansys Fluent 开展数值仿真。根据计算 结果,分析高超声速飞行器在机翼发生折叠情况 下的气动特性。出于对计算机翼折叠和近壁面网 格尺寸加密的考虑,利用重叠网格技术将流场划 分为三部分,分别是外部远场背景网格区、机身附 近背景网格区域和机翼附近前景网格区域,其中 前景网格区域与背景网格区域嵌套。为了分析飞 行器的气动特性,需要计算升力系数*C*_L、阻力系数 *C*_D、升阻比和力矩系数*C*_M等气动参数。它们的定 义如下:

$$\begin{cases} C_{L} = \frac{2L}{\rho_{\infty} v_{\infty}^{2} S} \\ C_{D} = \frac{2D}{\rho_{\infty} v_{\infty}^{2} S} \\ C_{M} = \frac{2M}{\rho_{\infty} v_{\infty}^{2} Sl} \end{cases}$$
(10)

式中:L、D和M分别为升力、阻力和俯仰力矩; ρ_{∞} 为来流密度; v_{∞} 为来流速度;S为参考面积;l为参考长度。

按照飞行器设计要求给出参考面积 S 为 11.5 m²,参考长度 *l* 为 5.6 m,在计算过程中, S 和 *l* 保持不变^[14]。

令未折叠状态为初始状态, α 为机翼折叠部分 与初始状态的夹角,折叠过程采用三种不同的折 叠速度,分别为w=c,w=c/2和 $w=A\sin(Bt)$ 。其 中w为折叠角速度,c为0.785 rad/s,A为 $\pi^2/8$,B为 $\pi/2$,折叠角度最大为90°,折叠过程和折叠速度 如图 3~图4所示。为了研究折叠翼运动过程的非 定常效应,本文还计算在折叠角为15°、30°、45°、 60°、75°和90°时的稳态结果。

图 3 机翼折叠示意图 Fig. 3 Sketch of wing folding

折叠翼飞行器在不同折叠角度下的稳态结果 与瞬态结果如图5所示。

图5 折叠翼飞行器在不同折叠角度下的稳态 结果与瞬态结果

从图5可以看出:折叠过程对阻力系数的影响 较小,对升力系数、升阻比和力矩系数的影响较 大;相同折叠角度时,瞬态与稳态的气动特性差别 不大,随着折叠角度的增加,升力系数和力矩系数 均减小,但是在折叠角度大于75°时,气动系数随着 折叠角度的变化较小。

高超声速飞行器的阻力主要由激波阻力和摩 擦阻力决定,而激波主要产生在飞机头部以及机 翼翼尖部分,如图6所示,在机翼发生折叠时,转动 的小翼翼尖仍然会产生激波,如图7所示。

图 6 初始状态马赫数云图 Fig. 6 Mach number contour of initial state

图 7 结束状态马赫数云图 Fig. 7 Mach number contour of final state

从图 6~图 7可以看出:所产生的激波阻力整体变化不大,但是折叠过程改变了小翼与主体部分的相对角度,使得折叠部分的升力发生了改变,因此升力系数与力矩系数的变化均较大。

5.2 折叠过程中气动弹性对气动特性的 影响

根据现有研究表明,高超声速飞行器在飞行 过程中,由于机体与空气之间存在着强烈的相互 作用,飞行器表面结构会发生一定的结构变形,使 得飞行器在飞行过程中的气动问题更加 复杂^[15-16]。

本文仅探究可折叠机翼部分的气动弹性对整 机气动特性的影响,其他大部分均做刚体处理。 选用的飞行马赫数为6,飞行高度为36km,来流压 强为547 Pa,来流温度为236K,飞行器的迎角为 10°,侧滑角为0°。折叠翼的材料参数如表1所示, 折叠过程为匀角速度运动,折叠时间为2s,折叠 角速度为0.785 rad/s,最大折叠角度为90°。

表1 机翼的材料参数 Table 1 Material parameters of wings

Table 1 Whatehal parameters of wings				
材料名称	密度/ (kg·m ⁻³)	弹性模量/ GPa	泊松比	屈服强度/ MPa
钛铝合金	3 950	150	0.3	600
碳钢	7 850	200	0.3	250
T700	1 780	250	0.3	7 000

机翼折叠过程中有无气动弹性的气动参数变 化如图 8~图 11 所示,飞行器所用的材料均有一定 的弹性,因此在高超声速飞行过程中,气体压力会 使得机翼产生一定的弹性形变。

Fig. 11 Moment coefficient

从图 8~图 11可以看出:改变了物体的气动外 形,使得阻力系数有所降低,升力系数和力矩系数 有所增加,并提高了升阻比。随着机翼折叠角度 的增加,气动弹性对飞行器气动特性的影响逐渐 增大。不同的材料弹性特性也会使飞行器在相同 工况飞行时产生不同程度的变形。材料弹性模量 越小,在折叠相同角度时折叠机翼的变形越大,使 得阻力系数更小,升力系数与力矩系数更大。

3 结 论

 高超声速飞行器在飞行时,会在翼尖产生 激波,应力主要集中在飞行器头部与翼尖部分。

2)折叠机翼能够有效地改变飞行器的飞行特性。折叠过程对升力系数、力矩系数均有较大影响,但对阻力系数影响较小。当折叠角度超过75°时,气动系数随折叠角度的变化较小。

3) 气动弹性对飞行器的气动性能有一定的影响,且随着折叠角度的增大逐渐增大。

参考文献

[1] 崔尔杰,白鹏,杨基明.智能变形飞行器的发展道路[J]. 航空制造技术,2007,50(8):38-41.

CUI Erjie, BAI Peng, YANG Jiming. The development path of intelligent deformation vehicle[J]. Aeronautical Manufacturing Technology, 2007, 50(8): 38-41. (in Chinese)

- [2] 孙杨,昌敏,白俊强.变形机翼飞行器发展综述[J].无人 系统技术,2021,4(3):65-77.
 SUN Yang, CHANG Min, BAI Junqiang. Review of morphing wing aircraft [J]. Unmanned Systems Technology, 2021,4(3):65-77. (in Chinese)
- [3] 廖波,袁昌盛,李永泽.折叠机翼无人机的发展现状和关键技术研究[J].机械设计,2012,29(4):1-5.
 LIAO Bo, YUAN Changsheng, LI Yongze. Development status and key technologies of folding-wing unmanned air vehicle[J]. Journal of Machine Design, 2012, 29(4):1-5. (in Chinese)
- [4] 张欣,季宏丽,周丹杰,等.高超声速飞行器变体机翼方案及气动特性分析[J].航空工程进展,2023,14(4):47-57.
 ZHANG Xin, JI Hongli, ZHOU Danjie, et al. Variant wing scheme and aerodynamic characteristics analysis of hypersonic vehicle [J]. Advances in Aeronautical Science and Engineering, 2023, 14(4):47-57. (in Chinese)
- [5] 丛歆雨,吴杰.可变形翼导弹动态气动特性的仿真研究
 [J]. 宇航总体技术, 2021, 5(5): 60-65.
 CONG Xinyu, WU Jie. Simulation study on dynamic aerodynamic characteristics of deformable wing missile [J]. Astronautical Systems Engineering Technology, 2021, 5(5): 60-65. (in Chinese)
- [6] 彭悟宇,杨涛,王常悦,等.高超声速伸缩翼变形飞行器轨
 迹多目标优化[J].国防科技大学学报,2019,41(1):41-47.

PENG Wuyu, YANG Tao, WANG Changyue, et al. Trajectory multi-objective optimization for hypersonic telescopic wing morphing aircraft[J]. Journal of National University of Defense Technology, 2019, 41(1): 41-47. (in Chinese)

[7] 李军府,艾俊强,董海锋.飞机变形技术发展探究[J].航 空科学技术,2009,20(2):3-6.

(下转第173页)