文章编号:1674-8190(XXXX)XX-001-08

基于贝叶斯网络的某民用飞机着陆距离研究

王可,邵静雯,杨俊

(中国民用航空飞行学院飞行技术学院,广汉 618307)

摘 要:采用民用飞机的实际运行数据和飞机性能软件仿真审定数据对着陆距离对比分析,能够为该型飞机运行能力的提升提供量化支撑。从实际运行数据中提取性能仿真计算所需的关键条件以得到相同条件下的所需着陆距离(RLD)及距离差,利用四分位法将着陆相关数据离散化处理,并对建模方法进行比选;采用PC算法学习网络结构,贝叶斯估计学习网络参数,构建实际着陆距离超出RLD风险模型;利用贝叶斯网络精确推理计算超出RLD状态的后验概率及最大后验假设。结果表明:拉平至接地时间在7s左右、接地至地速40节时间在18~24s之间可有效降低实际着陆距离超出RLD概率,并结合相关参数对着陆运行提出建议以降低超出RLD风险。

关键词:着陆距离;QAR数据;性能软件;贝叶斯网络;运行建议
 中图分类号: V212.13⁺1; V328.3
 DOI: 10.16615/j. cnki. 1674-8190. XXXX. XX.01

Research on landing distance of a civil aircraft based on Bayesian network

WANG Ke, SHAO Jingwen, YANG Jun

(Flight Technology College, Civil Aviation Flight University of China, Guanghan 618307, China)

Abstract: Adopting the actual operation data of a domestic civil aircraft and the simulation and validation data of aircraft performance software to perform the landing distance comparison and analysis can provide the quantitative support for the improvement of the aircraft's operation capability. The key conditions required for performance simulation calculation are extracted from the actual operation data to obtain the required landing distance (RLD) and distance difference under the same conditions. The landing-related data is discretized by the quartile method, and the modeling methods are compared and selected. The network structure is learned by PC algorithm. Bayesian estimation is used to learn network parameters to construct the risk model of actual landing distance exceeding RLD. The posterior probability and maximum posterior hypothesis of exceeding RLD state are calculate by using Bayesian network accurate reasoning. The results show that the probability of exceeding RLD can be effectively reduced by flattening to ground time of about 7 s and grounding to ground speed of 40 knots between 18~24 s, and some suggestions are put forward to reduce the risk of exceeding RLD by combining relevant parameters.

Key words: landing distance; QAR data; performance software; Bayesian network; operation suggestion

收稿日期: 2024-05-07; 修回日期: 2024-07-05

基金项目:中央高校基本科研业务费资助项目——重点项目(24CAFUC01001);研究生创新项目基金(X2023-7);第一批省级科技计划 项目(24ZHSF0272)

通信作者: 王可(1976-), 男, 硕士, 副教授。 E-mail: wangkecafuc@163.com

引用格式:王可, 邵静雯, 杨俊. 基于贝叶斯网络的某民用飞机着陆距离研究[J]. 航空工程进展, XXXX, XX(XX): 1-8. WANG Ke, SHAO Jingwen, YANG Jun. Research on landing distance of a civil aircraft based on Bayesian network[J]. Advances

in Aeronautical Science and Engineering, XXXX, XX(XX): 1-8. (in Chinese)

0 引 言

从 2016年6月至 2024年3月,某民用飞机累 计交付 128架,安全运行 360 000 h,累计载客量超 过 1 200万人次。随着该机型日益广泛投入航线 运行,航司用户积累的实际运行数据越发丰富。 快速存取记录器(Quick Access Recorder,简称 QAR)作为一种用于监控和记录航班飞行参数的 机载设备,能够为飞行安全评估、飞机能力提升提 供有力的数据支持。充分利用 QAR 数据服务民 用飞机从"能用"向"易用"转型,正成为民用飞机 制造商及航司用户的关注热点。

作为机型交付目录清单必备项之一的飞机客 户化性能分析软件(简称性能软件),是应《航空器 制造厂家运行支持体系建设规范》(MD-FS-AEG006)^[1]要求由飞机制造商提供给航司用户的 商用专业配套工具,主要用于民用运输飞机签派 放行前的性能分析和安全评估。对比某民用飞机 着陆阶段 QAR 数据与性能软件仿真结果,通过数 据挖掘手段为实际运行提供优化改进策略具有积 极意义。

签派放行前,航司用户依循《大型飞机公共航 空运输承运人运行合格审定规则》(CCAR-121-R7)^[2]要求,使用性能软件仿真获得当次航班的所 需着陆距离(Required Landing Distance,简称 RLD),进而与目的地机场或目的地备降机场的跑 道可用着陆距离(Landing Distance Available,简称 LDA)进行比较评估,从而判定装载情况多变的航 班是否满足放行要求。航班即将到达目的地机场 或目的地备降机场前,航司用户还须依据当前实 际运行条件使用性能软件或机组快速参考手册 (Quick Reference Handbook, 简称 QRH)获得运行 着陆距离 (Operational Landing Distance, 简称 OLD),并在其基础上增加15%的安全余量,从而 得到受因素影响的空中着陆距离(Factored In-Flight Landing Distance, 简称 FLD), 比较 FLD 与 LDA,进而判断航班是否满足安全着陆要求。

尽管局方规章在定义 RLD 和 FLD 时已计入

了足够的保守余量,但由于着陆距离是飞机运动 的物理呈现,不仅受机型和运行条件影响,也与飞 行员操纵密切相关,结合QAR数据评估该机型在 运行中的实际着陆距离,对于民用飞机运行能力 优化和提升十分必要。

陈红英等^[3]介绍了自动刹车条件下实际着陆 距离的计算方法;孙京超^[4]提出了一种基于蒙特卡 洛方法和QAR数据修正的飞机着陆仿真模型;占 欣^[5]利用数理统计方法、云物元模型对民用飞机着 陆冲/偏出跑道的风险进行评估。上述研究或是 提出了实际着陆距离的计算方法,或是对实际着 陆冲/偏出跑道风险进行评估,未能结合民用飞机 审定数据对实际着陆距离超出RLD这一潜在隐患 事件开展量化分析。

Barry^[6]利用贝叶斯网络评估飞机偏离跑道风 险。钱字^[7]等基于云模型和贝叶斯网络对飞机超 轮速事件进行风险评估;王兴隆等^[8]利用贝叶斯网 络量化了空中交通运输系统韧性;Peter等^[9]在 SGS算法基础上提出了PC算法,该算法在独立性 判断准确的情况下,结果可靠性高;Yves^[10]认为贝 叶斯估计与极大似然估计不同,不依赖于渐进推 理且在小样本中是有效的。上述研究表明贝叶斯 网络适用于飞行不安全事件的风险定量评估,但 考虑本研究样本的参数分布可能与该机型的整体 运行情况存在偏差,故采用PC算法学习网络结 构,贝叶斯估计学习网络参数。

综上,本文使用某民用飞机性能软件产生审 定数据,对比实际着陆距离与RLD,利用贝叶斯网 络构建实际着陆距离超出 RLD 风险模型,通过贝 叶斯精确推理得到实际着陆距离超出 RLD 的后验 概率以及最大后验假设参数组合,结合实际着陆 数据提出运行建议。

1 贝叶斯网络建模

贝叶斯网络建模方法主要有手动建模和学习 建模两种方式,本研究采取学习建模方法,贝叶斯 网络建模由结构学习和参数学习两部分组成^[11]。

1.1 贝叶斯网络结构学习(PC算法)

结构学习的目标是得到一个与样本数据集拟 合度最高的网络结构,主要可以分为基于评分搜 索和基于依赖统计分析两种方法。本文使用的PC 算法是基于依赖统计分析方法的一种^[12]。

1.1.1 确定依赖关系

1) 设 V 是输入点集, G 是 V 的完全无向图。

2) 对于G中任意两个相邻点*i*,*j*,若二者在给 定节点*k*时条件独立,则删除*i*和*j*之间的边。

PC算法把上述过程转化为d分隔^[13]问题,为 判断d分隔,需对任意两个节点进行条件独立性检 验,PC算法采用Fisher Z Test进行条件独立性检 验^[14],认为随机变量整体上服从多元高斯分布,这 时变量条件独立与变量之间的偏相关系数为0等 价。在校正任意两个变量*i*、*j*的相邻节点列表子集 *K*的影响后,*i*、*j*的*h*阶偏相关系数*p*^[15]为

$$\rho_{i,jK} = \frac{\rho_{i,jK \setminus h} - \rho_{i,h|K \setminus h} \rho_{j,h|K \setminus h}}{\sqrt{\left(1 - \rho_{i,h|K \setminus h}^2\right)\left(1 - \rho_{j,h|K \setminus h}^2\right)}}$$

为判断 $\rho_{i,j|k}$ 是否为0,将 $\rho_{i,j|k}$ 经Fisher Z变换转换为正态分布:

$$Z(i,j|K) = \frac{1}{2} \log\left(\frac{1+\hat{\rho}_{i,j|K}}{1-\hat{\rho}_{i,j|K}}\right)$$
(2)

对于零假设 $H_0(i, j|K)$: $\rho_{i,j|K} \neq 0$,给定显著性 水平 $\alpha \in (0, 1)$,依循双侧检验规则,若公式(3)成 立,则拒绝零假设,即*i*,*j*关于*K*条件独立。

$$Z(i,j|K)\sqrt{n-|K|-3} \leq \Phi^{-1}\left(1-\frac{\alpha}{2}\right)$$

其中,*n*为样本数目,|*K*|为相邻节点列表子集长度,Φ为累积分布函数。

由公式(3)变形可得公式(4)。

$$2(1 - \Phi(|Z(i,j|K)\sqrt{n-|K|-3}|)) \ge \alpha$$
(4)

其中,不等号左侧为P值。

PC算法生成无向图的流程图如图1所示。

Fig. 1 The flow chart of undirected graph generated by PC algorithm

1.1.2 确定依赖关系方向

(1)

(3)

得到无向图后,需要确定边的依赖方向,先将 无向图中*X*−*Y*−*Z*变为*X*→*Y*←*Z*,再利用*d*分 隔结论反推出贝叶斯网络中边的方向,把骨架扩 展为DAG。对于任意三个以依赖关系边相连的节 点*X*−*Z*−*Y*,其依赖关系如图2所示,在此给出 判断无向边方向的三条规则。

由 *d* 分隔结论反推出贝叶斯网络中边的方向, 总结为以下三条规则:

- 1) 若存在 $X \rightarrow Y Z$,把Y Z变为 $Y \rightarrow Z$ 。
- 2) 若存在*X*→*Z*→*Y*,把*X*−*Y*变为*X*→*Y*。
- 3) 若存在 $X Z_1 \rightarrow Y, X Z_2 \rightarrow Y, 且 Z_1, Z_2$

不相邻,把X - Y变为 $X \rightarrow Y_{\circ}$

最终得到完全部分有向无环图。

1.2 贝叶斯网络参数学习(贝叶斯估计)

得到贝叶斯网络结构后,可通过参数学习方 法从样本集中估计网络中节点的条件概率表。常 用的参数学习方法包括极大似然估计和贝叶斯 估计。

1)极大似然估计:认为待估参数是客观存在 的,观察到的样本中已经出现的数据出现的概率 是最大的,进而反推出参数的取值。

2) 贝叶斯估计:认为参数服从某种概率分布, 观察到的样本数据只是在参数的分布下产生的, 因此可根据经验得出待估参数的先验分布,通过 观察到的样本的似然度和贝叶斯公式计算后验分 布,并以参数在该后验分布下的期望来估算参 数值。

选用贝叶斯估计对网络进行参数学习,贝叶 斯估计的数学描述如公式(5)所示。

$$\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{m(x)} = \frac{f(x|\theta)\pi(\theta)}{[f(x|\theta)\pi(\theta)d(\theta)]}$$
(5)

式中: $\pi(\theta)$ 为参数 θ 的先验分布; $\pi(\theta|x)$ 为参数 θ 的 后验分布。

因此贝叶斯估计可看作在假定 θ 服从 $\pi(\theta)$ 的 先验分布的前提下,根据样本信息校正先验分布, 得到后验分布,通常取后验分布的期望作为参数 的估计值,后验分布的期望如公式(6)所示。

$$\hat{\theta}_{be} = E\pi(\theta|x) \tag{6}$$

2 数据准备

获取 RLD、实际着陆距离以及着陆时的环境数据、机组操纵数据。RLD通过该机型配套性能软件获得,该软件属于飞机交付必要项,计算结果与手册内容一致。以该民用飞机在其主要运行机场从 2023 年 4 月至 2023 年 7 月的 QAR 数据为基础,利用 Python筛选出有效航段 741个。

2.1 所需着陆距离(RLD)

对 741 个有效样本提取性能软件仿真计算 RLD需要的大气环境、飞机构型等条件,如表1所示,其中1 kt=1.852 km/h。

	表1	仿耳	其计	算 RI	、D f	青要自	的参数	
Table 1	lΊ	he pa	aram	eters	req	uired	for RLI) are

calculated by simulation

参数名称	QAR代称
襟翼构型	FLAPC_app50
最后进近速度与着陆参考速度差/kt	V_app_ref
温度/℃	OAT_app50
风速/kt	WIND_app50
压力高度/m	PA_app50
飞机全重/kg	WEIGHT_app50
跑道坡度	Runway_slope
跑道道面状况	Runway_condition

最后进近速度与着陆参考速度差是指着陆进场50英尺(1英尺=0.3048m)时的实际速度减去着陆参考速度V_{REF},其余参数均为进场50英尺时的状态或数值,部分参数需进行单位转换。

由于 QAR 参数是以飞机为记录载体,并不包含着陆跑道相关信息,如跑道坡度及道面状况。 故提取各有效航段中 50 英尺进场时的磁航向,结 合国内航行情报资料汇编 NAIP 中的机场和跑道 信息,根据磁航向判断着陆跑道方向,以此确定跑 道坡度。道面状况则依据民航空管局发布的雪情 通告得到十个机场在 2023 年 4 月至 2023 年 7 月间 的湿道面信息,以判断各航段着陆时的道面状况。

将上述条件参数输入到性能软件的飞机飞行 手册模块 AFM 的子模块 Required Landing Distance 中, 仿真计算得到 RLD。

2.2 数据离散化

将获得的 RLD 与实际着陆距离进行比较,计 算距离差值。同时提取建立网络模型所需要的着 陆相关参数,并对连续型数据进行离散化处理,方 可构建贝叶斯网络。除着陆机场、跑道道面状况、 50英尺襟翼构型、刹车模式、超出 RLD 状态以外, 其余 20 个参数均需离散化处理。

本文使用四分位法进行离散化,四分位法使 用中位数和标准四分位间距分别代替传统统计方 法中的均值和标准差作为对数据总体的估计,研 究表明,四分位法不受数据分布的限制,抗扰动性 优越,统计分析结果更客观,更能反映数据的特 性^[16]。四分位离散化后的参数数值区间如表 2 所示。

I able 2 Parameter value interval after discretization								
会物材料	离散化数值区间							
<i>②</i> 奴 石 怀	0	1	2	3				
飞机全重/kg	(30 450,33 899]	(33 899,35 011]	(35011,36031]	(36 031,38 539]				
50英尺风速/kt	(-12.7,2.7]	(2.7,6.7]	(6.7,11.3]	(11.3,28.7]				
进场无线电高度/ft	(50,53]	(53,56]	(56,60]	(60,69]				
50英尺俯仰角/(°)	(-2.5488,0.1758]	(0.1758,0.6152]	(0.6152,1.0547]	(1.0547,3.0762]				
50英尺爬升率/(ft/min)	(-932, -756]	(-756, -704]	(-704, -652]	(-652, -474]				
50英尺地速/kt	(120,136]	(136,141]	(141,146]	(146,171]				
50英尺指示空速与着陆参考速度差/kt	(-2.5,5]	(5,6.75]	(6.75,8.75]	(8.75,22.25]				
拉平无线电高度/ft	(12,35]	(35,40]	(40,44]	(44,49]				
拉平至接地时间/s	(3,7]	(7,8]	(8,9]	(9,14]				
接地俯仰角/(°)	(-0.5273,2.6367]	(2.6367,3.2520]	(3.2520,3.7793]	(3.7793,5.6250]				
接地爬升率/(ft/min)	(-222, -100]	(-100, -58]	(-58, -9]	(-9, 189]				
接地地速/kt	(112,125]	(125,130]	(130,135]	(135,154]				
刹车生效时刻/s	(2,3]	(3,4]	(4,17]					
刹车生效地速/kt	(79,115]	(115,120]	(120,125]	(125,145]				
接地后平均刹车压力/psi	(105.2,275.7]	(275.7,310.4]	(310.4,336.3]	(336.3,530.4]				
人工接管自动刹车时刻/s	(0,17]	(17,20]	(20,22]	(22,34]				
反推打开时刻/s	(3,5]	(5,6]	(6,15]					
反推打开时长/s	(1,10]	(10,11]	(11,13]	(13,19]				
接地至地速40节时间/s	(14,22]	(22,24]	(24,29]	(29,55]				
着陆时间/s	(25,31]	(31,33]	(33,38]	(38,64]				

表2 离散化后参数数值区间 Table 2 Parameter value interval after discretization

由于四分位离散化时,采用等频分箱,以保证 相同的值在同一分箱内,可能会导致箱数不足四 个,如刹车生效时刻、反推打开时刻等参数只分成 三类。

3 贝叶斯网络方法比选

3.1 结构学习方法比选

在 AMD Ryzen 7 5800U环境中分别使用基于 评分搜索的方法、基于依赖统计分析的方法、混合 学习方法对网络进行结构学习,具体结果如表 3 所示。

表 3	贝叶斯网络结构学习方法比选
Table 3	Bayesian network structure learning

method selection							
方法类别	方法名称	学习时长/s	有向边 数量	超出 RLD 状态是否 有父节点			
基于评分 搜索	基于 BIC 评分的 爬山搜索算法	57.323	227	有			
基于依赖 统计分析	PC算法	0.214	48	有			
混合学习	MMHC算法	48 970. 700	19	无			

从表3可以看出:基于BIC评分的爬山搜索算 法学习得到的有向边数量227条,对于共25个节 点的模型来说,网络结构过于复杂,且不利于后续 进行参数学习;MMHC算法学习时间过长且超出 RLD状态无父节点,因此不考虑这两个算法。PC 算法学习非常迅速且超出 RLD状态有父节点,有 向边数量合理,因此最终选用 PC 算法进行结构 学习。

3.2 参数学习方法比选

在 AMD Ryzen 7 5800U环境中分别使用极大 似然估计、贝叶斯估计对 PC 算法学习得到的网络 结构进行参数学习,使用准确率、精确率、召回率、 F1分数4个指标分别评价网络对超出 RLD 状态的 预测效果,各指标的定义如下所示。

1)准确率

准确率衡量的是模型预测正确的样本数占总 样本数的比例。

Accuracy = (TP + TN)/(TP + FP + FN + TN)(7)

式中: T_{P} 指预测正确的正样本数量; T_{N} 指预测正确 的负样本数量; F_{P} 指预测错误的正样本数量; F_{N} 指 预测错误的负样本数量,以下指标同样适用。

2) 精确率

精确率指的是预测正确的正样本数占所有预 测为正的样本数的比例。

$$Precision = TP/(TP + FP)$$
(8)

3) 召回率

召回率主要关注的是预测正确的正样本数占 所有实际为正的样本数的比例。

$$Recall = TP/(TP + FN)$$
(9)

4) F1分数(F1 score)

F1分数是精确率和召回率的调和平均数,特 别适用于不平衡数据集。在精确率和召回率同等 重要的情况下,F1分数是一个可参考的指标。

F1score = (2Precision*Recall)/(Precision +

$$Recall$$
) (10)

使用两种参数学习方法,得到的网络对超出 RLD状态的预测效果如表4所示。

表4 贝叶斯网络参数学习方法比选 Table 4 Selection of Bayesian network parameter learning methods

方法名称	准确率	精确率	召回率	F1分数
极大似然估计	0.803	0.842	0.752	0.794
贝叶斯估计	0.807	0.830	0.779	0.804

从表4可以看出:使用贝叶斯估计对网络结构 进行参数学习,准确率、召回率、F1分数均高于极 大似然估计,精确率低于极大似然估计,因此最终 确定选用贝叶斯估计学习网络参数。

4 实际着陆距离超出 RLD 风险模型

本节基于某民用飞机实际着陆数据及性能软件仿真所得 RLD,构建实际着陆距离超出 RLD风险模型,开展贝叶斯网络精确推理,并提出着陆运行建议以降低超出 RLD风险。

4.1 模型构建

利用 PC 算法对离散化后的数据进行贝叶斯 网络结构学习,得到一个完全部分有向无环图 (CPDAG),将与RLD超限状态相关的节点及其对 应的依赖关系展示如图3所示。

图 3 超出 RLD 状态相关的节点及其对应的依赖关系 Fig. 3 Overlimit RLD status related nodes and their dependencies

得到网络结构后,将网络结构及离散化后的数据输入贝叶斯估计,利用贝叶斯估计学习得到节点的条件概率,先验概率由数据本身获得。至此,贝叶斯网络模型已经构建完毕,模型对超出RLD状态的预测准确率为0.807,精确率为0.830, 召回率为0.779,F1分数为0.804,预测效果较好。

4.2 贝叶斯网络精确推理

4.2.1 超出 RLD 后验概率

在所有样本中,超出 RLD 的先验概率是 0.4857,利用贝叶斯网络精确推理,通过改变两个 影响超出 RLD 状态的父节点的数值区间,得到超 出 RLD 的后验概率。具体结果如表5所示。

表5 超出 RLD 随父节点取值变化的后验概率 Table 5 A posteriori probability of an overrun RLD changing with the value of the parent node

			<u>^</u>					
条件	超出RLD 生哈娅或	不同离散化数值区间超出 RLD后验概率						
	几巡帆平	0	1	2	3			
拉平至接地 时间	0 485 7	0.3319	0.4996	0.5366	0.7169			
接地至地速 40节时间	0.4857	0.1665	0.4006	0.6399	0.9549			

从表5可以看出:拉平至接地时间为3~7s,接 地至地速40节时间为14~22s、22~24s时,超出 RLD后验概率均有所降低,即实际着陆距离超出 RLD风险降低。但是拉平至接地时间过短(6s以 下)可能会导致着陆载荷大^[11],因此建议飞行员将 拉平至接地时间控制在7s左右。而接地至地速 40节时间过短会影响乘客乘坐飞机的舒适感,且 样本中接地至地速40节时间在18s以下的只占了 0.0121,因此建议飞行员将接地至地速40节时间 控制在18~24s之间。

同时改变两个父节点的数值区间,超出 RLD 影响因素叠加后的后验概率变化如表6所示,该表 数据验证了拉平至接地时间在7 s左右,接地至地 速40节时间在18~24 s之间可有效降低实际着陆 距离超出 RLD 风险。

4.2.2 超出 RLD 最大后验假设

最大后验假设问题简言之就是根据已知证据,针对某些"嫌疑性"大的变量,寻求后验概率最大的参数组合。已知超出RLD状态,求得最可能

的参数取值组合如表7所示。

表 6 超出 RLD 影响因素叠加后的后验概率变化 Table 6 A posteriori probability change after superposition of factors influencing transfinite RLD

tion of lactory influencing transmitter (EDD								
超出 RLD 先 验概率	拉平至接地时 间离散化区间	接地至地速40节 时间离散化区间	超出RLD后 验概率					
	0	0	0.0320					
0 495 7	0	1	0.1382					
0.4857	1	1	0.4126					
	1	0	0.0697					

表7 超出 RLD 最大后验假设参数组合 Table 7 Transfinite RLD maximum a posteriori hypothesis parameter combination

					·		•			
		着陆参数离散化数值区间								
超出 RLD 状态	拉平至接 地时间	接地至地速 40节时间	进场无线 电高度	50英尺 俯仰角	50英尺 爬升率	50英尺 地速	拉平无线 电高度	接地地速	刹车生效 地速	接地后平均 刹车压力
0	0	0	2	3	3	0	0	0	0	3
1	0	3	3	3	1	3	0	3	3	0

从表7可以看出:与未超出RLD相比,实际着 陆距离超出RLD时的部分参数的取值区间发生了 变化,因此结合前一小节得到的结论,对实际着陆 提出运行建议:

1) 拉平至接地时间在7s左右、接地至地速 40节时间在18~24s之间较为合适。

2) 进场无线电高度在 60~69 ft 之间且 50 英 尺下降率在 704~756 ft/min 之间时, 50 英尺地速 小于 146 kt 为宜。

3) 接地地速取值为 135~154 kt 时, 接地后平 均刹车压力大于 275.7 psi为宜。

5 结 论

1)本文构建的贝叶斯网络模型对实际着陆距 离超出 RLD 的预测准确率为 0.807,精确率为 0.830,召回率为 0.779,F1分数为 0.804,预测效 果较好。

2) 拉平至接地时间、接地至地速40节时间是 影响超出 RLD 状态的两个主要因素。

3)为降低实际着陆距离超出RLD风险,通过 贝叶斯精确推理,结合实际运行数据提出建议:拉 平至接地时间在7s左右、接地至地速40节时间在 18~24 s之间较为合适;进场无线电高度在60~ 69 ft之间且 50英尺下降率在 704~756 ft/min之间 时,50英尺地速小于 146 kt 为宜;接地地速取值为 135~154 kt 时,接地后平均刹车压力大于 275.7 psi为宜。

本研究分析了致使实际着陆距离超出规章许可距离的主要因素以及机组可以介入管控的时机和指标。由于在航班实际着陆时飞行员更多使用自动刹车模式且大多数航段的跑道状况为干道面,样本中采用最大人工刹车模式的航段和湿道面的航段数量较少,可能会对最终的网络结构及节点的条件概率产生影响。未来可以扩大样本数量,使样本的数据分布更加符合客观运行条件。

参考文献

- [1] 中国民用航空局.航空器制造厂家运行支持体系建设规范:MD-FS-AEG006[S].北京:中国民用航空局,2014.
 CAAC. Specification for the construction of the operation support system of aircraft manufacturers: MD-FS-AEG006
 [S]. Beijing: CAAC, 2014. (in Chinese)
- [2] 中国民用航空局.大型飞机公共航空运输承运人运行合格 审定规则:CCAR-121-R7[S].北京:中国民用航空局, 2021.

CAAC. Rules for the certification of the operation of public air transport carriers of large aircraft: CCAR-121-R7[S]. Beijing: CAAC, 2021. (in Chinese)

[3] 陈红英,向小军.民用飞机实际着陆距离计算方法研究

[J]. 计算机仿真, 2013, 30(9): 66-69.

CHEN Hongying, XIANG Xiaojun. Research on the calculation method of actual landing distance of civil aircraft[J]. Computer Simulation, 2013, 30(9): 66–69. (in Chinese)

- [4] 孙京超.基于QAR数据的飞机着陆仿真模型[J]. 航空计算技术, 2019, 49(1): 24-26,31.
 SUN Jingchao. Aircraft landing simulation model based on QAR data[J]. Aeronautical Computing Technique, 2019, 49(1): 24-26,31. (in Chinese)
- [5] 占欣.基于QAR数据的冲/偏出跑道风险评估研究[D]. 天津:中国民航大学, 2019.
 ZHAN Xin. Research on risk evaluation of runway excursion based on QAR data[D]. Tianjin: Civil Aviation University of China, 2019. (in Chinese)
- [6] BARRY D J. Estimating runway veer-off risk using a Bayesian network with flight data [J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103180.
- [7] 钱字,龙涛.基于云贝叶斯网络的运输飞机超轮速风险评估[J].航空工程进展,2022,13(3):171-178.
 QIAN Yu, LONG Tao. Risk assessment on transport aircraft exceeding tire speed rating based on cloud Bayesian network [J]. Advances in Aeronautical Science and Engineering, 2022, 13(3): 171-178. (in Chinese)
- [8] 王兴隆,赵俊妮,贺敏.基于贝叶斯网络的空中交通运输 系统韧性评价[J].南京航空航天大学学报,2022,54(6): 1121-1130.

WANG Xinglong, ZHAO Junni, HE Min. Resilience evaluation on air transportation system based on Bayesian network [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(6): 1121-1130. (in Chinese)

- [9] SPIRTES P, GLYMOUR C, SCHEINES R. Reply to Humphreys and freedman's review of causation, prediction, and search[J]. The British journal for the philosophy of science, 1997, 48(4): 555-568.
- [10] ROSSEEL Y. Small sample solutions for structural equa-

tion modeling [M] // Anon. Small sample size solutions. Routledge: Springer, 2020.

- [11] 孙景陆.基于贝叶斯网络的飞行超出风险评价[D].天津: 中国民航大学,2022.
 SUN Jinglu. Flight exceedance risk assessment based on Bayesian network[D]. Tianjin: Civil Aviation University of China, 2022. (in Chinese)
- [12] 孟光磊, 丛泽林, 宋彬, 等. 贝叶斯网络结构学习综述[J/OL]. 北京航空航天大学学报: 1-24 [2024-07-03]. https://doi.org/10.13700/j.bh.1001-5965.2023.0445. MENG Guanglei, CONG Zelin, SONG Bin, et al. Review of Bayesian network structure learning [J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-24 [2024-07-03]. https://doi.org/10.13700/j. bh. 1001-5965.2023.0445. (in Chinese)
- [13] KALISCH M, BÜHLMAN P. Estimating high-dimensional directed acyclic graphs with the PC-algorithm[J]. Journal of Machine Learning Research, 2007, 8(3): 453-461.
- [14] FISHER R A. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population[J]. Biometrika, 1915, 10(4): 507-521.
- [15] 邵振.数据驱动的故障检测技术研究与应用[D].南京:东南大学,2022.
 SHAO Zhen. Data-driven fault detection technology and application[D]. Nanjing: Southeast University, 2022. (in Chinese)
- [16] 赵新斌,李斌.异常值检测方法在民航告警中的应用[J]. 南京航空航天大学学报,2017,49(4):524-530.
 ZHAO Xinbin, LI Bin. Application of outlier detection method in civil aviation alarm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017,49(4):524-530. (in Chinese)

(编辑:丛艳娟)